Dehnungsmessstreifen Erste Wahl für Dehnungsmessungen

Dehnungsmessstreifen

Erste Wahl für Dehnungsmessungen

Inhaltsverzeichnis

Einleitung	6
Erläuterungen zu den technischen Daten	6
Von der gemessenen Dehnung zur mechanischen Spannung	12
So finden Sie leicht den richtigen Dehnungsmessstreifen (DMS)	14
Typencodierung	16
DMS der Serie Y	18
Technische Daten – Serie Y	19
mit einem Messgitter/Linear-DMS	20
mit zwei Messgittern/Doppel-DMS	25
mit zwei Messgittern/T-Rosette/Doppelscher DMS	26
mit zwei Messgittern/T-Rosette	27
mit zwei Messgittern/Torsions-Scher-DMS	29
mit drei Messgittern/Rosetten	30
mit vier Messgittern/Vollbrücken	34
mit vier Messgittern/Membranrosetten	35
DMS-Ketten	36
DMS mit Anschlusskabel K-CLY / K-CDY / K-CXY / K-CRY	40
Technische Daten — K-CLY/K-CDY/K-CXY/K-CRY	41
(inkl. fluorpolymerisoliertem Draht) mit einem Messgitter	42
(inkl. fluorpolymerisoliertem Draht) mit zwei Messgittern	43
(inkl. fluorpolymerisoliertem Draht) mit drei Messgittern	45
DMS mit Anschlusskabel und RJ11-Stecker	47
DMS der Serie C	48
Technische Daten – Serie C	49
mit einem Messgitter	50
mit zwei Messgittern, mit drei Messgittern	51
DMS der Serie M	52
Technische Daten – Serie M	53
mit einem Messgitter	54
mit zwei Messgittern	55
mit drei Messgittern	57

DMS der Serie G	58
Technische Daten – Serie G	59
mit einem Messgitter, mit zwei Messgittern	60
Spezial-DMS	62
Gekapselter DMS mit Litze	63
Anschweißbarer DMS	64
DMS für hohe Dehnung	65
DMS für Messungen in Bolzen	66
DMS für Messungen auf Leiterplatten	68
DMS zur Integration in Faserverbundwerkstoffe	70
Druckmessstreifen	71
Rissmessstreifen	72
Temperatursensor	74
DMS zur Eigenspannungsermittlung	75
System zur Eigenspannungsermittlung nach dem Bohrlochverfahren	79
DMS-Zubehör	80
DMS-Befestigungsmittel	80
DMS-Abdeckmittel	82
Reinigungsmittel, Hilfsmittel zum Kleben und Löten	85
Lötstützpunkte	86
Kabel und Litze	87
DMS-Installationskoffer	90
Brückenergänzung, Röhrenlötzinn, bleifreies Lot	91
Optische Dehnungsmessstreifen	92
Kundenspezifische Dehnungsmessstreifen	93
Seminare	94

Erläuterungen zu den technischen Daten

DMS-Serien

Das Dehnungsmessstreifen-Programm von HBM besteht aus den Serien Y, C, M, G, sowie Spezial-DMS. Innerhalb der DMS-Serien gibt es verschiedene Typenreihen. Viele technische Daten sind für eine DMS-Serie gleich, weshalb Sie innerhalb dieses Kataloges die technischen Daten einer Serie immer vor der Auflistung der einzelnen DMS finden. Sofern sich für einzelne DMS technische Daten von den anderen DMS dieser Serie unterscheiden, so ist dies bei den betreffenden DMS vermerkt. Die Angabe der technischen Daten und ihrer Toleranzen erfolgt entsprechend OIML-Richtline IR62, die mit der VDI/VDE-Richtlinie 2635 weitgehend identisch ist.

Die technischen Daten

wurden gemäß OIML-Richtlinie IR62 ermittelt. Die Toleranzen sind nach OIML mit zweifacher Standardabweichung angegeben. Halbiert man die angegebenen Toleranzwerte des k-Faktors, der Querempfindlichkeit, des Temperaturkoeffizienten, und des Temperaturganges, so entsprechen die Angaben der VDI/VDE Richtlinie 2635. Nachstehend werden die in den Tabellen der technischen Daten verwendeten Begriffe näher erläutert.

Anschlusskonfigurationen

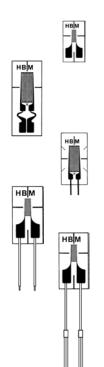
HBM liefert Dehnungsmessstreifen mit unterschiedlichen Anschlusskonfigurationen. Wählen Sie die ideale Konfiguration entsprechend Ihrer Anwendung und Ihren persönlichen Vorlieben – für jeden der richtige Anschluss.

Integrierte Lötflächen z. B. LY4

ermöglichen Löten direkt auf dem DMS

ermöglichen einfaches Löten direkt auf dem DMS bei nahezu völliger mechanischer Entkopplung von Lötflächen und DMS

Bändchen: Ni-plattierte Kupferbändchen; nicht isoliert; 30 mm lang z. B. LY1


- kein Löten direkt auf dem DMS
- zur völligen mechanischen Entkopplung der Kabel vom DMS
- Verwendung separater Lötstützpunkte direkt am DMS erforderlich

Fluorpolymerisolierte Anschlussdrähte (50 mm lang) z. B. K-CLY4

- kein Löten am DMS
- Fluorpolymerisolierung verhindert das Ankleben des Kabels bei der Installation
- Lötstützpunkte in der Nähe des DMS erforderlich, auf denen dann auch die Brückenschaltung erfolgen kann

TPE-isoliertes Flachbandkabel wahlweise in 3- oder 4-Leiteranschluss; z. B. K-CLY4

- Kabellänge nach Wahl (0,5 bis 10 m)
- Löten an der Messstelle entfällt komplett
- Fluorpolymerisolierter Draht am DMS verhindert das Ankleben des Kabels bei der Installation

DMS-Abmessungen

Die angegebene aktive Messgitterlänge a ist die Länge der Gitterlinien ohne Umkehrstellen (Querbrücken). Es ist möglich, die Trägerfolie des DMS zuzuschneiden, wenn folgendes beachtet wird: Der Einfluss beim Beschneiden parallel zum Messgitter ist gering. Das Kürzen der DMS-Trägerfolie senkrecht zum Messgitter verändert die Dehnungseinleitung und damit wesentliche technische Eigenschaften des DMS. Es sollte daher ein Mindestabstand von 1 mm zwischen Messgitterende und dem Ende der Trägerfolie eingehalten werden.

Schematische Darstellung eines DMS

DMS-Widerstand

Als Widerstand eines Dehnungsmessstreifens bezeichnet man den elektrischen Widerstand zwischen den beiden zum Anschluss des Messkabels bestimmten Metallbändern, Lötflächen oder Kabelenden.⁽¹⁾ Bitte beachten Sie, dass für DMS mit Anschlusskabeln⁽²⁾ der Nennwiderstand ohne Kabel angegeben wird.

Dehnungsmessstreifen von HBM sind erhältlich mit 120 Ohm, 350 Ohm, 700 Ohm oder 1.000 Ohm Widerstand. Auf jeder DMS-Packung sind der Nennwert des Widerstandes sowie die Widerstandstoleranz pro Packung angegeben. Dehnungsmessstreifen von HBM werden zu 100% im Widerstand kontrolliert.

k-Faktor (Dehnungsempfindlichkeit)

Die Dehnungsempfindlichkeit k eines DMS ist der Proportionalitätsfaktor zwischen relativer Widerstandsänderung $\Delta R/R_0$ und der zu messenden Dehnung ϵ : $\Delta R/R_0$ = k · ϵ

Die Dehnungsempfindlichkeit ist eine dimensionslose Zahl und wird k-Faktor genannt.

Dieser k-Faktor wird für jedes Fertigungslos durch Messen bestimmt und als Nennwert mit Toleranz auf jeder DMS-Packung angegeben. Die k-Faktoren variieren zwischen den Fertigungslosen nur um wenige Promille.

Temperaturkoeffizient des k-Faktors

Der nominelle k-Faktor gilt bei Raumtemperatur. Er ändert sich mit der Temperatur, jedoch ist der Zusammenhang in sehr guter Näherung linear. Bei dem Messgitterwerkstoff Konstantan (Serien G, Y) steigt der k-Faktor mit der Temperatur, bei Chrom-Nickel-Messgitterfolien (Serie C, M) wird der k-Faktor mit steigender Temperatur kleiner. Der Temperaturkoeffizient des k-Faktors ist auf jeder DMS-Packung mit seiner Toleranz angegeben.

- (1) DMS LE11
- (2) siehe Seite 40

Maximale elektrische Speisespannung am einzelnen DMS für hochgenaue Dehnungsmessungen

Die angegebenen maximalen Speisespannungen beziehen sich auf den Spannungsabfall am einzelnen Dehnungsmessstreifen. Wird der DMS in einer Wheatstone-Brückenschaltung in Viertel-, Halb- oder Vollbrückenkonfiguration eingesetzt, verteilt sich die ausgewählte Brückenspeisespannung innerhalb der Schaltung entsprechend der Konfiguration und somit auch die umgesetzte Leistung.

Ein Dehnungsmessstreifen kann als ohmscher Widerstand betrachtet werden, der elektrische Leistung in Wärme umsetzt.

Die Einflussgrößen Ohmscher Widerstand des DMS, DMS-Gitterfläche und prinzipieller Aufbau (z.B. der Einfluss gestapelter Gitter) sowie der elektrische Spannungsabfall am DMS beeinflussen die Erwärmung, die über den Messkörper mit seiner spezifischen Wärmeleitung abfließen.

Im statischen Fall erhöht sich die Temperatur der Messstelle, bis Erwärmung und Wärmeableitung im thermischen Gleichgewicht sind. Erst danach ist eine genaue und stabile Messung möglich.

Für jeden HBM DMS wird die maximale Speisespannung auf dem mitgelieferten Datenblatt angegeben, bei der die Erwärmung der Messstelle 5°C nicht übersteigt und damit ein möglichst kleiner Messfehler von weniger als 5µm/m gemacht wird.

Die Berechnung geht von einer Entwärmung direkt unterhalb der DMS Fläche aus und berücksichtigt die Wärmeleitung der Materialien für den der DMS angepasst wurde.

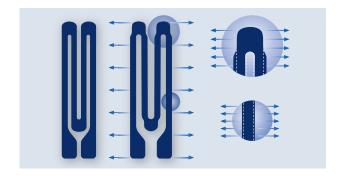
Eine Überschreitung der maximalen Speisespannung führt nicht zu einer Beschädigung des Dehnungsmessstreifen und ist weit von der maximalen Spannungsbelastung entfernt, die bei vielen 100V liegt.

Im Katalog werden die maximale Speisespannungswerte für ferritischen Stahl angegeben. In der Tabelle finden Sie Korrekturfaktoren im Vergleich zu Stahl, wenn bei der Messung DMS mit anderen Temperaturganganpassungen verwendet werden. Die extrem schlechte Wärmeleitfähigkeit von Kunststoff kann am besten durch einen hochohmigen DMS, eine reduzierte Spannung oder durch Ein-/ Ausschaltzyklen kompensiert werden.

Material Messkörper	HBM Code	Korrekturfaktor zu ferr. Stahl
Ferritischer Stahl	1	1
Aluminium	3	2,17
Austenitischer Stahl	5	0,55
Quarzglas / Komposit	6	0,12
Titan/Grauguss	7	0,66
Kunststoff	8	0,03
Molybdän	9	1,65

Jede DMS Packung enthält außerdem die korrekten Werte für den jeweiligen Werkstoff bezüglich seiner Temperaturanpassung.

Auf unserer Website finden Sie weitere Tipps und Tricks zu diesem Thema.



Referenztemperatur

Die Referenztemperatur ist die Umgebungstemperatur, auf die sich die technischen Daten der DMS beziehen, soweit dafür nicht Temperaturbereiche angegeben sind. Den angegebenen technischen Daten für DMS liegt die Referenztemperatur von 23 °C zugrunde.

Querempfindlichkeit

Die Querempfindlichkeit ist das Verhältnis der Empfindlichkeit eines DMS quer zur Messgitterrichtung zu der Empfindlichkeit in Messgitterrichtung. Auf jeder DMS-Packung ist die Querempfindlichkeit angegeben.

Schematische Darstellung der Querempfindlichkeit eines Messgitters

Gebrauchstemperaturbereich

Der Gebrauchstemperaturbereich ist der Bereich der Umgebungstemperatur, in dem DMS angewendet werden können, ohne dass bleibende Änderungen der Messeigenschaften auftreten. Für statische (nullpunktbezogene) oder dynamische (nicht nullpunktbezogene) Messungen ergeben sich unterschiedliche Gebrauchstemperaturbereiche.

Temperaturgang in Viertelbrückenschaltung

Dehnungsmessstreifen, die als Einzelmessstreifen verschaltet sind, zeigen bei Temperaturänderung ein Ausgangssignal. Dieses Signal wird "scheinbare Dehnung" oder auch "Temperaturgang einer Messstelle" genannt und ist unabhängig von der mechanischen Belastung des Messobjektes.

Es ist jedoch möglich, einen Dehnungsmessstreifen auf den Wärmeausdehnungskoeffizienten eines bestimmten Materials so anzupassen, dass das Ausgangssignal bei Temperaturänderung sehr klein ist. Solche Messstreifen werden als "temperaturgangangepasste" oder "selbstkompensierende" DMS bezeichnet. Alle Dehnungsmessstreifen von HBM, mit Ausnahme des Hochdehnungsmessstreifens LD20, sind selbstkompensierend.

Um die Temperaturganganpassung der DMS zu nutzen ist es notwendig, den Dehnungsmessstreifen nach dem Wärmeausdehnungskoeffizienten α des Probematerials zu wählen. Deshalb bietet HBM DMS für verschiedene Materialien an. Die Kennziffer für die Temperaturganganpassung ist Teil der Typenbezeichnung des DMS.


1	für ferritischen Stahl	mit α=	10,8 · 10 ⁻⁶ /K	
3	für Aluminium	mit α =	23 · 10 ⁻⁶ /K	
5	für austenitischen Stahl	mit α =	16 · 10 ⁻⁶ /K	
6	für Quarzglas	mit α =	0,5 · 10 ⁻⁶ /K	
7	für Titan / Grauguss	mit α =	9 · 10 ⁻⁶ /K	
8	für Kunststoff	mit α =	65 · 10 ⁻⁶ /K	
9	für Molybdän	mit α =	5,4 · 10 ⁻⁶ /K	

So sind z.B. die Typen LY21 oder RY31 (Kennziffer 1) an ferritischen Stahl angepasst. Trotz dieser Maßnahme bleibt noch ein kleiner Restfehler der in Form einer mathematischen Funktion angegeben wird sowie einer grafischen Darstellung auf der Packung aufgedruckt ist - die Scheindehnung. Das mitgelieferte Polynom der Scheindehnung bezieht sich auf den Dehnungsmessstreifen sowie auf Anschlussleitungen (falls vorhanden). Bei Verwendung von 2-Leiterschaltungeen sollte der Temperatureinfluss der Leiter mathematisch berücksichtigt werden. Bei 3- und 4-Leiterschaltungen kann die zusätzliche Korrektur des Leitungseinflusses entfallen.

DMS mit integrierten Lötflächen oder zugentlasteten Lötflächen

Das auf dem mitgelieferten Datenblatt angegebene Polynom der Scheindehnung gilt ausschließlich für Temperaturänderungen des Dehnungsmessstreifens.

DMS mit Anschlussbändchen (Ni-plattierte Kupferbändchen)/ mit fluorpolymerisolierter Anschlusslitze (z.B. 1-LE11-3/350ZE)/ mit Kupferlackdrähten/ vorverkabelte DMS (z.B. K-CLY4, K-CLY9,...)

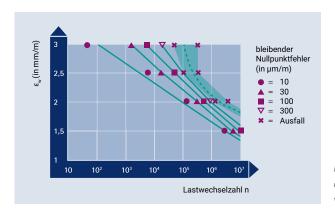
Das auf dem mitgelieferten Datenblatt angegebene Polynom für die Scheindehnung gilt für Temperaturänderungen des Dehnungsmessstreifens inklusive der Anschlüsse. Bei einer Kürzung der Anschlüsse um L' [in mm] ist dieser Wert in der Formel entsprechend zu korrigieren.

Mechanische Hysterese

Unter der mechanischen Hysterese eines DMS versteht man den Unterschied der Messwertanzeige zwischen ansteigender und abfallender Dehnungsbeanspruchung bei gleichen Dehnungswerten des Prüflings. Die Hysterese ist nicht nur vom DMS selbst abhängig, sondern in starkem Maße auch von den Installationsparametern, wie Art und Schichtdicke des Klebstoffes etc.. In den technischen Daten sind daher Hysteresewerte für unterschiedliche Installationsparameter angegeben.

Maximale Dehnbarkeit

Unter der maximalen Dehnbarkeit eines DMS wird die Dehnung verstanden, bei der seine Kennlinie (Widerstandsänderungs-Dehnungscharakteristik) um mehr als $\pm 5\%$ von der mittleren Kennlinie des Typs abweicht. Dies ist meist dann der Fall, wenn die Installation oder der DMS beschädigt ist.


Kleinster Krümmungsradius

Die Flexibilität eines DMS wird durch den kleinsten Krümmungsradius gekennzeichnet, dem er in jeweils einer Richtung ohne Hilfsmaßnahmen standhält. Die Polyimid-Träger der DMS-Serie Y und C sind so flexibel, dass sie praktisch um Kanten geklebt werden können. Die Trägermaterialien der anderen DMS-Serien sind spröder.

Dauerschwingverhalten

Wird ein DMS mit einer Wechseldehnung beansprucht, der eine statische Mitteldehnung überlagert sein kann, so können mit zunehmender Lastspielzahl Änderungen des Nullpunkts entstehen. Das Dauerschwingverhalten von Dehnungsmessstreifen ist abhängig von der Wechseldehnungsamplitude und der Mitteldehnung, aber weitgehend unabhängig von der Frequenz.

Die erreichbaren Lastspielzahlen sind des Weiteren abhängig von den verschiedenen Parametern der Installation und deshalb nur für repräsentative Beispiele angegeben.

Beispielhafte Darstellung des Dauerschwingverhaltens von DMS

Verwendbare Befestigungsmittel

Zu jeder DMS-Serie sind die verwendbaren Befestigungsmittel angegeben. Hinsichtlich der Anwendungstechnik unterscheidet man im HBM-Zubehörprogramm kalt und heiß härtende Klebstoffe und Punktschweißverfahren. Eines der wichtigsten Auswahlkriterien ist der Anwendungstemperaturbereich der einzelnen Befestigungsmittel.

Von der gemessenen Dehnung zur mechanischen Spannung

Die Analyse des zweiachsigen Spannungszustandes mit unbekannten Hauptrichtungen

Das Prinzip der experimentellen Spannungsanalyse mit Dehnungsmessstreifen (DMS) besteht darin, dass an der Bauteiloberfläche Dehnungen mit DMS gemessen werden. Aus diesen gemessenen Dehnungen werden unter Kenntnis der Materialeigenschaften (Elastiziätsmodul und Querdehnungszahl) die mechanischen Spannungen in Betrag und Richtung bestimmt. Basis hierfür ist das Hookesche Gesetz, dessen Gültigkeit sich auf den elastischen Verformungsbereich linear-elastischer Werkstoffe erstreckt.

In der experimentellen Spannungsanalyse werden zur Dehnungsmessung so genannte Dreimessgitter-Rosetten eingesetzt. Diese stehen in den Ausführungen 0°/45°/90° und 0°/60°/120° zur Verfügung. Die beiden Ausführungen haben historischen Ursprung. Es ist dem Anwender überlassen, welche Ausführung eingesetzt wird.

Die drei Messgitter der Rosetten werden mit den Buchstaben a, b und c bezeichnet. Demzufolge werden die drei Dehnungen ϵ_a , ϵ_b , und ϵ_c mit einer 3-Messgitter-Rosette gemessen.

Die Berechnung der Hauptnormalspannungen σ_1 und σ_2 erfolgt für die 0°/45°/90°-Rosette nach der Beziehung:

$$\sigma_{\text{1/2}} = \frac{E}{1 - \nu} \cdot \frac{\epsilon_{\text{a}} + \epsilon_{\text{c}}}{2} \pm \frac{E}{\sqrt{2} \left(1 + \nu\right)} \cdot \sqrt{\left(\epsilon_{\text{a}} - \epsilon_{\text{b}}\right)^2 + \left(\epsilon_{\text{c}} - \epsilon_{\text{b}}\right)^2}$$

0°/45°/90°-Rosette z.B. RY3x

und für die 0°/60°/120°-Rosette zu:

$$\sigma_{1/2} = \frac{\mathsf{E}}{1 - \mathsf{v}} \cdot \frac{\varepsilon_{\mathsf{a}} + \varepsilon_{\mathsf{b}} + \varepsilon_{\mathsf{c}}}{3} \pm \frac{\mathsf{E}}{1 + \mathsf{v}} \cdot \sqrt{\left(\frac{2\varepsilon_{\mathsf{a}} - \varepsilon_{\mathsf{b}} - \varepsilon_{\mathsf{c}}}{3}\right)^{2} + \frac{1}{3} \left(\varepsilon_{\mathsf{b}} - \varepsilon_{\mathsf{c}}\right)^{2}}$$

0°/60°/120°-Rosette z.B. RY7x Nachfolgend werden die Hauptrichtungen bestimmt. Zunächst wird der Tangens eines Hilfswinkels ψ berechnet.

Für die 0°/45°/90°-Rosette nach der Beziehung:

$$\tan \psi = \frac{2\epsilon_b - \epsilon_a - \epsilon_c}{\epsilon_a - \epsilon_c} \qquad \qquad \frac{Z}{N}$$

und für die für die 0°/60°/120°-Rosette zu:

$$\tan \psi = \frac{\sqrt{3} \left(\epsilon_b - \epsilon_c \right)}{2 \epsilon_a - \epsilon_b - \epsilon_c} \qquad \left| \frac{Z}{N} \right|$$

Anmerkung: Der Tangens eines Winkels im rechtwinkligen Dreieck ist das Verhältnis von Gegenkathete (= Zähler Z) zu Ankathete (= Nenner N):

$$tan \ \psi = \frac{Gegenkathete}{Ankathete} = \frac{Z}{N}$$

Diese Mehrdeutigkeit des Tangens macht es notwendig, vor der endgültigen Berechnung der beiden oben genannten Quotienten die Vorzeichen von Zähler (Z) und Nenner (N) zu bestimmen. Die Ermittlung der Vorzeichen ist wichtig, weil nur aus ihnen zu erkennen ist, in welchem Quadranten des Kreises der Winkel ψ zu finden ist.

Aus dem Zahlenwert des Tangens ist zunächst der Betrag des Winkels ψ zu bestimmen:

$$|\psi| = \arctan \left[\circ \right]$$

Anschließend ist der Winkel o nach folgendem Schema zu bestimmen:

$$\begin{array}{l} Z \geq 0 \begin{pmatrix} + \\ N > 0 \end{pmatrix} \quad \phi = \frac{1}{2} \Big(0^{+} + \left| \psi \right| \Big)$$

$$\begin{array}{l} Z>0 \; (+) \\ N\leq 0 \; (-) \end{array} \right\} \quad \phi = \frac{1}{2} \Big(180^{\circ} - \left|\psi\right| \Big)$$

$$\begin{array}{l} Z \leq 0 \; \begin{pmatrix} - \\ N < 0 \; \begin{pmatrix} - \\ - \end{pmatrix} \end{array} \right\} \quad \phi = \frac{1}{2} \Big(180^\circ \; + \left| \psi \right| \Big)$$

$$\left. \begin{array}{l} Z < 0 \; (-) \\ N \geq 0 \; (+) \end{array} \right\} \quad \phi = \frac{1}{2} \Big(360^{\circ} - \left| \psi \right| \Big)$$

Der so gefundene Winkel ϕ ist von der Achse des Bezugsmessgitters a ausgehend im mathematisch positiven Sinn (entgegen dem Uhrzeigersinn) anzutragen. Die Achse des Messgitters a bildet den einen Schenkel des Winkels ϕ , der zweite Schenkel gibt die erste Hauptrichtung an. Das ist die Richtung der Hauptnormalspannung σ_1 (identisch mit der Hauptdehnungsrichtung ϵ_1). Der Scheitelpunkt liegt im Schnittpunkt der Messgitterachsen. Die zweite Hauptrichtung (Richtung der Hauptnormalspannung σ_2) hat den Winkel ϕ +90°.

So finden Sie leicht den richtigen DMS

Geometrie des DMS

Die Geometrie des DMS ist abhängig von der zu lösenden Messaufgabe.

Linear-DMS (z. B. LY1), ein Messgitter

Einsatzfall:

Dehnungsmessung in einer Richtung

T-Rosetten mit zwei Messgittern (z. B. XY1), die 90° zueinander versetzt angeordnet sind

Einsatzfälle:

- Analyse des zweiachsigen Spannungszustandes mit bekannten Hauptrichtungen
- Messungen an Zug-/Druckstäben Weiterführende Hinweise in 1) und 2)

V-förmige DMS (z. B. XY2), zwei Messgitter, unter ±45° zur DMS-Achse Einsatzfälle:

- Messungen an Torsionsstäben
- Ermittlung von Scherspannungen, wie sie in Scherstäben im Bereich der neutralen Faser vorkommen

Weiterführende Hinweise in 1) und 2)

<code>Dreimessgitter-Rosetten</code>, Anordnung unter 0°/45°/90° (z. B. RY8) bzw. 0°/60°/120° (z. B. RY4)

Einsatzfall:

 Analyse des zweiachsigen Spannungszustandes, mit unbekannten Hauptspannungsrichtungen

Die Beschaltung der drei Messgitter erfolgt jeweils in einer so genannten Viertelbrückenschaltung. Die Berechnung der ersten und zweiten Hauptspannung in Betrag und Richtung erfolgt gemäß der Beschreibung auf Seite 12

Weiterführende Hinweise in 2)

Doppel-DMS (z. B. DY1), mit zwei Messgittern, die parallel zueinander angeordnet sind

Einsatzfall:

■ Messungen an Biegestäben

Weiterführende Hinweise in 1) und 2)

Vollbrücken-DMS (z. B. VY4), vier Messgitter, die jeweils 90° zueinander versetzt angeordnet sind Einsatzfälle:

- Messungen an Zug-/Druckstäben
- Messungen an Torsionsstäben
- Ermittlung von Scherspannungen, wie sie in Scherstäben im Bereich der neutralen Faser vorkommen

Weiterführende Hinweise in 1) und 2)

DMS-Ketten (z. B. KY1), 10 bzw. 15 sehr kleine Messgitter äquidistant auf einem gemeinsamen Träger plus einem Kompensations-DMS Einsatzfall:

Ermittlung von Dehnungsverläufen.

HBM liefert DMS-Ketten auch mit mehreren Rosetten und alternierenden Messgitterrichtungen, so dass auch der Verlauf eines zweiachsigen Spannungszustandes ermittelt werden kann.

Weiterführende Hinweise in 2)

Membranrosetten (z. B. MY1), vier Messgitter Einsatzfälle :

- Herstellung von Membrandruckaufnehmern
- 1) Broschüre " Anwendung der Wheatstone Brückenschaltung"
- 2) Buch "Eine Einführung in die Technik des Messens mit Dehnungsmessstreifen"

DMS-Messgitterlänge

Die DMS-Messgitterlänge ist abhängig vom Messziel, da als Ergebnis einer Messung mit DMS der Mittelwert der Dehnungen unter dem Messgitter ermittelt wird. Im Allgemeinen stellen Messgitterlängen von 3 oder 6 mm eine gute Lösung dar.

Lange Messgitter empfehlen sich, wenn ein inhomogenes Material wie z.B. Beton oder Holz vorliegt. Ein langer DMS überbrückt die Inhomogenitäten des zu untersuchenden Materials und liefert als Messergebnis die gemittelte Dehnung unter dem Messgitter.

Kurze Messgitter eignen sich zur Erfassung eines lokalen Dehnungszustandes. Deshalb bieten sie sich an zur Bestimmung von Dehnungsverläufen (siehe DMS-Ketten), dem Maximum von Kerbspannungen und Ähnlichem.

DMS-Serien

Das DMS-Programm von HBM umfasst verschiedene Typenreihen mit folgenden typischen Anwendungen:

Y-DMS: der Universal-DMS für die experimentelle Spannungsanalyse und einfache Aufnehmer. Leichte Handhabung, robust, flexibel; viele Geometrien und Nennwiderstände verfügbar.

Messgitter: Konstantan; Messgitterträger: Polyimid

C-DMS: für Messungen bei extremen Temperaturen, Temperatureinsatzbereich von -269 ... bis $+250^{\circ}$ C; Temperaturgang angepasst im Bereich -200 ... $+250^{\circ}$ C.

Messgitter: Chrom-Nickel-Legierung; Messgitterträger: Polyimid

M-DMS: zeichnen sich durch sehr gutes Dauerschwingverhalten aus und für Messungen bei extremen Temperaturen, Temperatureinsatzbereich von -200 ... bis +250°C, kurzzeitig bis 300°C; Temperaturgang angepasst im Bereich -200 ... +250°C.

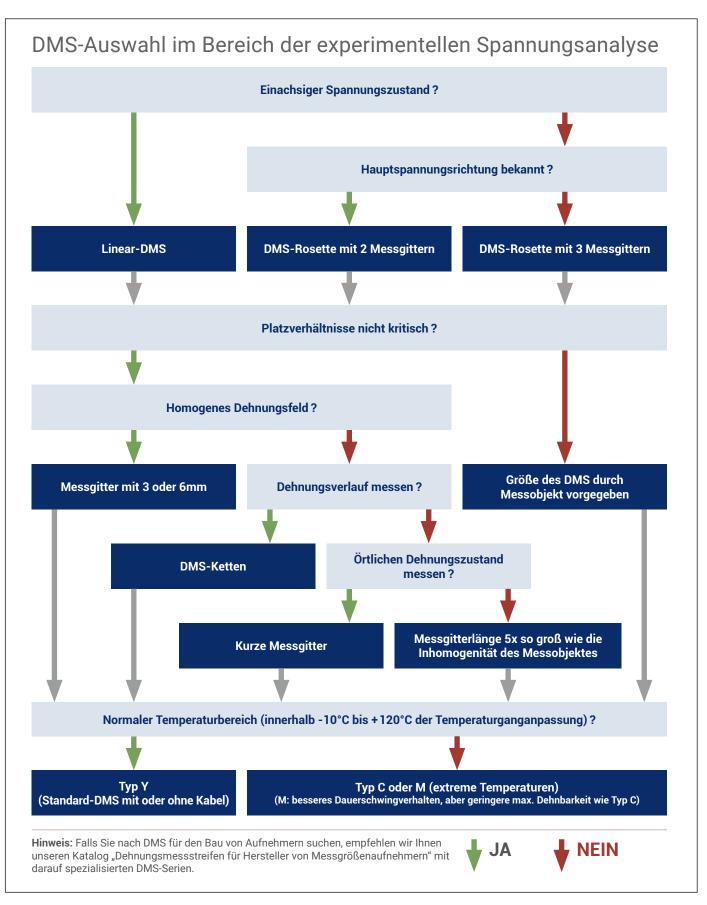
Messgitter: Chrom-Nickel-Legierung; Messgitterträger: Phenolharz, glasfaserverstärkt

G-DMS: für spezielle Anwendungen und den Aufnehmerbau, Nennwiderstände in $120\,\Omega$ und $350\,\Omega$ verfügbar

Messgitter: Konstantan; Messgitterträger: Phenolharz, glasfaserverstärkt.

DMS-Widerstand

Dehnungsmessstreifen von HBM werden in 120, 350, 700 und 1.000 Ohm angeboten. Die Wahl des Widerstandes hängt von den Randbedingungen der Messaufgabe ab. Andere Widerstände auf Anfrage.


120 Ω -DMS

+relativ unempfindlich gegenüber Schwankungen des Isolationswiderstandes, z.B. durch Feuchteeinwirkung.

Höherohmige DMS:

- +erzeugen infolge des geringeren Messstroms weniger Eigenwärme
- +unempfindlicher gegenüber ohmschen Widerständen in den Anschlussleitungen zum Messverstärker.
- bessere Antennen für den Empfang von Störimpulsen

Typencodierung

1 - L Y 1 1 - 3 / 120 A Optionen⁽¹⁾ Α = Applikationshilfe (hitzebeständiges Klebeband) ٧ = Vierleitertechnik Ζ = Zweileitertechnik _E = Messgitter abgedeckt $_{\mathsf{W}}$ = Messgitter nicht abgedeckt GΕ = zugentlastete Anschlussflächen, Messgitter abgedeckt ZW = Zweileiter, Messgitter nicht abgedeckt ZE = Zweileiter, Messgitter abgedeckt Messgitterwiderstand in Ohm Messgitterlänge in mm bei RY1, RY3, RY4, RY7: Durchmesser des Kreises, der die Messgitter umschließt bei DMS-Ketten: Abstand der Messgittermitten zueinander (Teilungsmaß) Material, auf das der DMS-1 ferritischer Stahl mit α = 10,8 · 10⁻⁶/K Temperaturgang angepasst ist: 3 Aluminium mit α = 23 · 10⁻⁶/K Finden Sie an dieser Position den 5 austenitischer Stahl mit α = 16 · 10⁻⁶/K Platzhalter "x", so ersetzen Sie 6 Quarzglas mit α = 0,5 · 10⁻⁶/K diesen bitte durch die Kennziffer 7 Titan / Grauguss mit α = 9 · 10⁻⁶/K 8 Kunststoff der Temperaturganganpassung mit α = 65 · 10⁻⁶/K Ihrer Wahl. 9 Molybdän mit α = 5,4 · 10⁻⁶/K Anordnung der Gitter, Art und Lage der Anschlüsse Serie C = Träger und Abdeckung: Polyimid / Messgitterfolie Chrom-Nickel-Legierung Serie M = Träger: Phenolharz, glasfaserverstärkt / Messgitter: Chrom-Nickel-Legierung / Abdeckung: Polyimid Serie Y = Träger und Abdeckung: Polyimid / Messgitterfolie Konstantan Serie G = Träger und Abdeckung: glasfaserverstärktes Phenolharz / Messgitterfolie Konstantan Anzahl der Messgitter und deren Lage zueinander = ein Messgitter, Linear-DMS L D = zwei Messgitter, Messgitterrichtung parallel Χ = zwei Messgitter, Messgitterrichtung T- oder X-förmig um 90° versetzt R = drei Messgitter, Rosetten ٧ = vier Messgitter, Vollbrücken-DMS М = Vollbrücken-DMS als Membranrosette Κ = DMS-Ketten zur Ermittlung von Dehnungsgradienten Standard oder konfigurierbar 1 = Standard

Κ

= mit frei konfigurierbaren Anschlusskabeln

⁽¹⁾ nur für ausgewählte DMS-Typen verfügbar, bei DMS zur Eigenspannungsanalyse Kennbuchstabe zur Unterscheidung

Noch größere Typenvielfalt - einfach bestellt

Der vorliegende Katalog bietet eine große Auswahl an Dehnungsmessstreifen (DMS). Neben unserem breit gefächerten Angebot an Vorzugs-DMS (ab Lager lieferbar) halten wir eine umfangreiche Auswahl an Varianten für Sie bereit.

So einfach bestellen Sie DMS

Ab Lager lieferbare Typen sind in der Preisliste mit einem Raster hinterlegt. Varianten-DMS sind nicht mit einem Raster hinterlegt und nicht immer ab Lager lieferbar. Die aktuelle Verfügbarkeit nennen wir Ihnen gern auf Anfrage. Die Mindestbestellmenge bei diesen DMS beträgt 3 Packungen.

Wofür steht der Platzhalter "x" in der Typencodierung bei den DMS der Spalte "Varianten"?

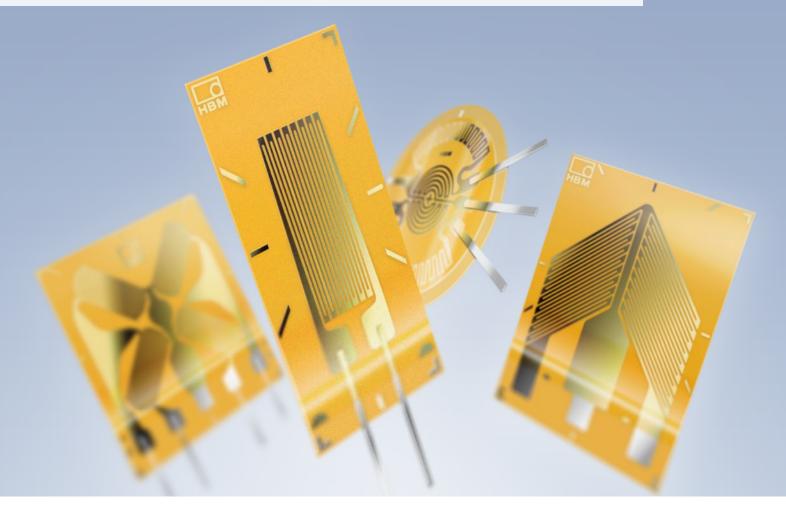
Ab Lager lie	ferbare Typen	Varianten	Nenn- wider- stand	Abmessungen (mm)			Max. zul. effektive Brücken- speisesp.	Löt- stätz- punkte	
				Mess	gitter	Mess träg	gitter- Jer		
Stahl	Aluminium	Sonstige	Ω	а	b	c	d	V	
1-LY11-0,6/120	1-LY13-0,6/120		120	0,6	1	5	3,2	1,5	LS 7
1-LY11-1,5/120	1-LY13-1,5/120	1-LY1x-1,5/120	120	1,5	1,2	6,5	4.7	2,5	LS 7
1-LY11-3/120	1-LY13-3/120 (1-LY1x-3/120	120	3	1,4	8,5	4,5	4	LS 7
1-LY11-3/120A		1-LY1x-3/120A	120	3	1,4	8,5	4,5	4	LS 7
1-LY11-6/120	1-LY13-6/120	1-LY1x-6/120	120	6	2,8	13	6	8	LS 5
1-LY11-6/120A		1-LY1x-6/120A	120	6	2,8	13	6	8	LS 5
1-LY11-10/120	1-LY13-10/120	1-LY1x-10/120	120	10	4,9	18,5	9,5	13	LS 5
1-LY11-10/120A		1-LY1x-10/120A	120	10	4,9	18,5	9,5	13	LS 5
1-LY11-1,5/350	1-LY13-1,5/350		350	1,5	1,2	5,7	4,7	4,5	LS 212
1-LY11-3/350	1-LY13-3/350	1-LY1x-3/350	350	3	1,5	8,5	4,5	7	LS 7
		1-LY1x-3/350A	350	3	1,5	8,5	4,5	7	LS 7
1-LY11-6/350	1-LY13-6/350	1-LY1x-6/350	350	6	2,9	13	6	14	LS 5
1-LY11-6/350A		1-LY1x-6/350A	350	6	2,9	13	6	14	LS 5
1-LY11-10/350		1-LY1x-10/350	350	10	5	18,5	9,5	23	LS 5
1-LY11-10/350A		1-LY1x-10/350A	350	10	5	18,5	9,5	23	LS 5

Anstelle des Platzhalters "x" in der Typencodierung der DMS in der Spalte "Sonstige", tragen Sie bitte die Ziffer für die entsprechende Temperaturgangkompensation ein.

Beispiel:

Sie wünschen eine Anpassung des Typs 1-LY1x-10/120 auf Kunststoff. Dann tragen Sie bei Ihrer Bestellung anstelle des Platzhalters "x" eine "8" ein, so dass die Bestellbezeichnung 1-LY18-10/120 lautet.

Die Vorzugs-DMS sind auf Stahl bzw. auf Aluminium angepasst.


Bitte beachten Sie die Ausnahmen bei den gekennzeichneten Typen!

Für einfache Bestellung nutzen Sie bitte unseren HBM online Shop www.hbm.com/HBMshop

DMS der Serie Y

- der Universal-DMS
- sehr gute Messeigenschaften
- verschiedene Anschlusskonfigurationen
- DMS mit Anschlusskabel (Seite 40)
- flexibel, daher einfache Handhabung
- große Geometrievielfalt ab Lager verfügbar
- viele Geometrien sind in verschiedenen Nennwiderständen (120, 350, 700, 1.000 Ω) verfügbar

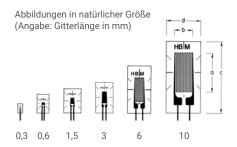
DMS-Konstruktion		Folian-DMS mit aingehettetem Massaitter
Messgitter		Folien-DMS mit eingebettetem Messgitter
Werkstoff		Konstantanfolie
Dicke räger	μm	ca. 3,8 oder 5, je nach DMS-Typ
Werkstoff		Polyimid
Dicke	μm	55 ± 5
Nbdeckung Werkstoff		Polyimid
Gesamtdicke DMS	μm	81±22
Anschlüsse	P.	nickelplattierte Cu-Bänder, ca. 30 mm lang
bei DMS ohne Anschlussbändchen		integrierte Lötflächen, ca. 1,5 mm lang, ca. 1,6 2,2 mm breit
		zugentlastete Lötflächen aus Kupfer-Beryllium
Vennwiderstand	0	120 250 700 oder 1 000 is need DMC Tun
Viderstandstoleranz ⁽²⁾	Ω %	120, 350, 700 oder 1.000, je nach DMS-Typ ±0,3 ohne; ±0,35 mit Anschlussbändern
-Faktor	70	ca. 2
lennwert des k-Faktors		auf jeder Packung angegeben
r-Faktor-Toleranz bei % 1,5mm Messgitterlänge	%	±1,5
bei ≧ 3 mm Messgitterlänge Femperaturkoeffizient des k-Faktors	% 1/K	±1 ca. (115 ±10) · 10·6
Vennwert des Temperaturkoeffizienten des k-Faktors	1/1	auf jeder Packung angegeben
<u> </u>	°C	
Referenztemperatur Gebrauchstemperaturbereich		23
für statische, d. h. nullpunktbezogene Messungen	°C	-70+200
für dynamische, nicht nullpunktbezogene Messungen	C	-200+200
Querempfindlichkeit	0,	auf jeder Packung angegeben
bei Referenztemperatur unter Verwendung von Klebstoff Z 70 am DMS-Typ LY11-6/120	%	-0,1
emperaturgang		auf jeder Packung angegeben
emperaturgang emperaturgang nach Wahl angepasst an Wärmeausdehnungskoeffizienten		aui Jeuei Fackung angegeben
lpha für ferritischen Stahl	1/K	10,8 · 10 ⁻⁶
α für Aluminium $α$ für Kunststoff	1/K 1/K	23 · 10 ⁻⁶ 65 · 10 ⁻⁶
α für austenitischen Stahl	1/K 1/K	16 · 10-6
α für Titan	1/K	9 · 10 ⁻⁶ 5.4 · 10 ⁻⁶
α für Molybdän α für Quarzglas	1/K 1/K	0,5 · 10·6
Toleranz des Temperaturgangs	1/K	±0,3 · 10-6
Anpassung des Temperaturgangs im Bereich ⁽³⁾	°C	-10+120
Mechanische Hysterese ⁽¹⁾		
bei Referenztemperatur und Dehnung ε=±1.000 μm/m am DMS-Typ LY11-6/120		
pei 1. Belastungszyklus und Klebstoff Z 70	μm/m	1
pei 3. Belastungszyklus und Klebstoff Z 70	μm/m	0,5
ei 1. Belastungszyklus und Klebstoff X 60	μm/m	2,5
pei 3. Belastungszyklus und Klebstoff X 60	μm/m	1
Maximale Dehnbarkeit ⁽¹⁾		
bei Referenztemperatur unter Verwendung von Klebstoff Z 70		
am DMS-Typ LY11-6/120 Dehnungsbetrag ε bei positiver Richtung	μm/m	50.000 (≙ 5%)
Dehnungsbetrag ε bei negativer Richtung	μm/m	50.000 (≦ 5 %) 50.000 (△ 5 %)
)quareahwingyarhaltan(1)		
Dauerschwingverhalten ⁽¹⁾ bei Referenztemperatur unter Verwendung von Klebstoff X 60		
am DMS-Typ LY61-6/120		
Freichbare Lastspielzahl L_W bei Wechseldehnung ϵ_W = ±1.000 µm/m und Nullpunktänderung ϵ_M Δ \leq 300 µm/m		>> 107 (Prüfung wurde bei 107 abgebrochen)
we consequentially ϵ_{W} – \pm 1.000 pm/m and Nullpunktandering ϵ_{m} Δ \leq 30 pm/m ϵ_{m} Δ		> 10 ⁷ (Prüfung wurde bei 10 ⁷ abgebrochen)
Cleinster Krümmungsradius längs und quer bei Referenztemperatur		
bei DMS mit Anschlussbändern	mm	0,3
bei DMS mit integrierten Lötflächen im Bereich des Messgitters	mm	0,3
an bereion des mesogritors		2
im Bereich der Lötflächen	mm	_
im Bereich der Lötflächen Verwendbare Befestigungsmittel	111111	_

⁽¹⁾ Die Daten sind abhängig von den verschiedenen Parametern der Installation und deshalb nur für repräsentative Beispiele angegeben.
(2) Bei Messgitterlängen von 0,3 und 0,6 mm kann der Nennwiderstand um ±1% abweichen. Für die Typen LY51/LY5x beträgt die Abweichung ±0,75%. Bei XY9x, RY9x sowie bei den KY-Typen (pro Kette) ±0,5%
(3) Die Anpassung an Kunststoff (Kennziffer 8) ist nur im Temperaturbereich -10...+50°C möglich

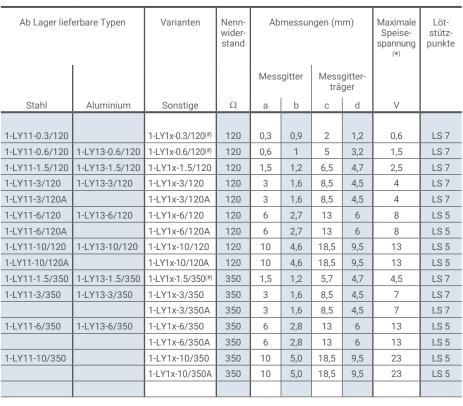
mit einem Messgitter/Linear-DMS

LY11

Linear-DMS


Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10 $^{\text{-}6}/\text{K}$

LY13


Temperaturgang angepasst an Aluminium mit α = 23 \cdot 10-6/K

LY1x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

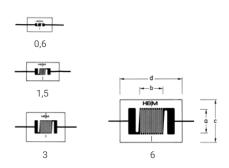
Inhalt je Packung 10 Stück

- (*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.
- (#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Ab	Abmessungen (mm)			Maximale Speise- spannung (*)	Löt- stütz- punkte
				Messgitter Messgitter- träger					
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	V	
1-LY21-0,6/120		1-LY2x-0.6/120 ^(#)	120	0,6	0,6	3,5	6,4	1	LS 7
		1-LY2x-1.5/120	120	1,5	1,5	4,7	8,3	2	LS 5
1-LY21-3/120		1-LY2x-3/120	120	3	2,8	7,5	10	6	LS 5
		1-LY2x-6/120	120	6 6 11		11	16	12	LS 4

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

LY21


Linear-DMS

Temperaturgang angepasst an Stahl mit α = 10.8 \cdot 10.6/K

LY2x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

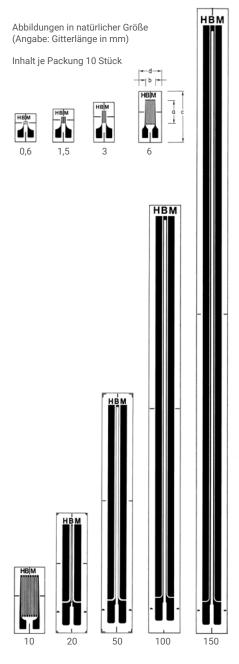
Inhalt je Packung 10 Stück

^(#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

mit einem Messgitter/Linear-DMS

LY41

Linear-DMS


Temperaturgang angepasst an Stahl mit $\alpha = 10.8 \cdot 10^{-6} / K$

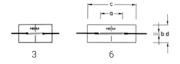
LY43

Temperaturgang angepasst an Aluminium mit α = 23 \cdot 10-6/K

LY4x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Ab Lager lieferbare Typen		Varianten	Nenn- wider- stand	Abmessungen (mm)			m)	Maximale Speise- spannung (*)	Löt- stütz- punkte
				Messgitter Messgitter- träger					
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	V	
1-LY41-0.6/120		1-LY4x-0.6/120 ^(#)	120	0,6	1,1	6	4	1,5	LS 7
1-LY41-1.5/120	1-LY43-1.5/120	1-LY4x-1.5/120	120	1,5	1,2	7	5	2,5	LS 5
1-LY41-3/120	1-LY43-3/120	1-LY4x-3/120	120	3	1,2	8	5	3,5	LS 5
		1-LY4x-3/120A	120	3	1,2	8	5	3,5	LS 5
1-LY41-6/120	1-LY43-6/120	1-LY4x-6/120	120	6	2,7	13,9	5,9	8	LS 5
1-LY41-6/120A		1-LY4x-6/120A	120	6	2,7	13,9	5,9	8	LS 5
1-LY41-10/120		1-LY4x-10/120	120	10	5	18	8	14	LS 5
		1-LY4x-10/120A	120	10	5	18	8	14	LS 5
1-LY41-20/120		1-LY4x-20/120	120	20	0,5	31,8	8,2	6,5	LS 5
1-LY41-50/120		1-LY4x-50/120	120	50	0,8	63,6	8,2	12	LS 5
1-LY41-100/120		1-LY4x-100/120	120	100	1	114,8	8,2	19	LS 5
1-LY41-150/120		1-LY4x-150/120	120	150	1,2	165,6	8,2	25	LS 5
1-LY41-1,5/350		1-LY4x-1.5/350(#)	350	1,5	2,3	9,2	5,9	6,5	LS 5
1-LY41-3/350	1-LY43-3/350	1-LY4x-3/350	350	3	2,5	10,9	5,9	9	LS 5
1-LY41-3/350A		1-LY4x-3/350A	350	3	2,5	10,9	5,9	9	LS 5
1-LY41-6/350	1-LY43-6/350	1-LY4x-6/350 ⁽²⁾	350	6	2,8	13,9	5,9	15	LS 5
		1-LY4x-6/350A	350	6	2,8	13,9	5,9	15	LS 5
1-LY41-10/350		1-LY4x-10/350	350	10	5	18	8	24	LS 5
		1-LY4x-10/350A	350	10	5	18	8	24	LS 5
		1-LY4x-20/350	350	20	0,5	31,8	8,2	10	LS 5
1-LY41-3/700	1-LY43-3/700	1-LY4x-3/700	700	3	2,7	10,9	5,9	13	LS 5
1-LY41-6/700		1-LY4x-6/700	700	6	4,1	13,9	5,9	23	LS 5
		1-LY4x-10/700	700	10	5	18	8	33	LS 5
		1-LY4x-3/1000 ^(#)	1.000	3	2,7	10,9	5,9	16	LS 5
1-LY41-6/1000		1-LY4x-6/1000	1.000	6	4,2	13,9	5,9	27	LS 5
		1-LY4x-10/1000	1.000	10	5	18	8	40	LS 5


^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.
(1) Lötstützpunkte sind nicht zwingend erforderlich
(2) Mit der Temperaturanpassung an Quarzglas (d. h. x=6) auch als Vorzugstyp (ab Lager verfügbar) lieferbar
(#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

mit einem Messgitter/Linear-DMS

LY5x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Inhalt je Packung 10 Stück

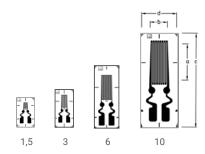
Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Abmessungen (mm)			Maximale Speise- spannung (*)	Löt- stütz- punkte	
				Messgitter Messgitter- träger					
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	V	
		1-LY5x-3/120	120	3	0,4	9	4,7	2	LS 7
		1-LY5x-6/120	120	6	0,4	13	4,7	3	LS 7

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

LY61

Linear-DMS

Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10-6/K


LY63

Temperaturgang angepasst an Aluminium mit α = 23 \cdot 10-6/K

LY6x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Inhalt je Packung 10 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	(······)			Maximale Speise- spannung (*)	Löt- stütz- punkte	
				Messgitter Messgitter- träger					
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	V	
1-LY61-1.5/120		1-LY6x-1.5/120	120	1,5	1,0	7,8	4,7	2,5	-
1-LY61-3/120		1-LY6x-3/120	120	3	1,5	9,8	4,7	4	_
1-LY61-6/120	1-LY63-6/120	1-LY6x-6/120	120	6	2,7	16	6,3	8	-
1-LY61-10/120		1-LY6x-10/120	120	10	4,6	23,5	9,3	13	-
1-LY61-3/350		1-LY6x-3/350	350	3	1,6	9,8	4,7	7	-
1-LY61-6/350	1-LY63-6/350	1-LY6x-6/350 ⁽¹⁾	350	6	2,7	16	6,3	13	-
1-LY61-6/350A		1-LY6x-6/350A	350	6	2,7	16	6,3	13	_
1-LY61-10/350		1-LY6x-10/350	350	10	5	23,5	9,3	21	_

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

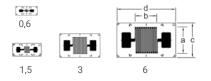
 $^{^{(1)}}$ Mit der Temperaturanpassung an Quarzglas (d.h. x=6) auch als Vorzugstyp (ab Lager verfügbar) lieferbar

mit einem Messgitter/Linear-DMS

LY71

Linear-DMS

Temperaturgang angepasst an Stahl mit a = $10.8 \cdot 10^{-6}$ /K


LY73

Temperaturgang angepasst an Aluminium mit a = $23 \cdot 10^{-6}$ /K

LY7x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

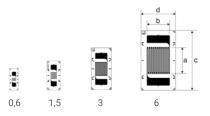
Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Inhalt je Packung 10 Stück

Ab Lager lieferbare Typen		Varianten	Nenn- wider- stand	Ab	messur	ngen (m	Maximale Speise- spannung (*)	Löt- stütz- punkte	
				Messgitter Messgitter- träger					
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	V	
1-LY71-0.6/120		1-LY7x-0.6/120 ^(#)	120	0,6	1	2,3	5,6	1	LS7
1-LY71-1.5/120		1-LY7x-1.5/120	120	1,5	1,5	3,4	7,5	2,5	LS5
1-LY71-3/120		1-LY7x-3/120	120	3	2,8	5,5	10,5	5	LS4
		1-LY7x-6/120	120	6	6	9	15,5	10	LS4
1-LY71-1.5/350	1-LY73-1.5/350	1-LY7x-1.5/350 ^(#)	350	1,5	1,6	3,4	7,5	5	LS5
1-LY71- 3/350		1-LY7x-3/350	350	3	2,7	5,5	10,5	8,5	LS4
		1-LY7x-6/350	350	6	5,6	9	15,5	18	LS4

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

LY81


Linear-DMS

Temperaturgang angepasst an Stahl mit a = $10.8 \cdot 10^{-6}$ /K

LY8x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Inhalt je Packung 10 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Ab	messur	ngen (m	m)	Maximale Speise- spannung (*)	Löt- stütz- punkte
				Messgitter Messgitter- träger a b c d					
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	V	
		1-LY8x-0.6/120(#)	120	0,6	1	5,6	2,3	1	LS7
1-LY81-1.5/120		1-LY8x-1.5/120	120	1,5	1,5	7,5	3,4	2,5	LS5
1-LY81-3/120		1-LY8x-3/120	120	3	3	10,5	5,5	5	LS4
		1-LY8x-6/120	120	6	6	15,5	9	10	LS4
1-LY81-1.5/350		1-LY8x-1.5/350 ^(#)	350	1,5	1,5	7,5	3,4	5	LS5
		1-LY8x-3/350	350	3	3	10,5	5,5	8,5	LS4
1-LY81-6/350		1-LY8x-6/350	350	6 5,6 15,5 9			9	18	LS4

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

⁽¹⁾ Lötstützpunkte sind nicht zwingend erforderlich

^(#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

⁽¹⁾ Lötstützpunkte sind nicht zwingend erforderlich (#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

mit einem Messgitter/Linear-DMS

LY91

Linear-DMS

Temperaturgang angepasst an Stahl mit $\alpha = 10.8 \cdot 10^{-6}/K$

LY9x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Inhalt je Packung 10 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Ab	messur	ngen (m	m)	Maximale Speise- spannung (*)	Löt- stütz- punkte
				Mess	gitter	Mess trä			
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	V	
		1-LY9x-1.5/120_E	120	1,5	2	6,6	4,7	3,5	LS 5
		1-LY9x-3/120_E	120	3	2	6,3	7	4,5	LS 5
		1-LY9x-6/120_E	120	6	4	9,5	9,5	9	LS 5
1-LY91-1.5/350_E		1-LY9x-1.5/350_E(#)	350	1,5	2	6,6	4,7	5,5	LS 7
1-LY91-3/350_E		1-LY9x-3/350_E	350	3 2 7 6,3			6,3	8	LS 5
1-LY91-6/350_E		1-LY9x-6/350_E	350	6 4 9,5 9,5			9,5	15,5	LS 5

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

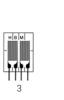
(#)Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

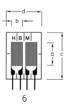
mit zwei Messgittern/Doppel-DMS

DY11

Doppel-DMS

Temperaturgang angepasst an Stahl mit $\alpha = 10.8 \cdot 10^{-6} / K$


DY13


Temperaturgang angepasst an Aluminium mit α = 23 \cdot 10-6/K

DY1x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Inhalt je Packung 5 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Ab	Abmessungen (mm)			Maximale Speise- spannung (*)	Löt- stütz- punkte
				Messgitter Messgitter- träger					
Stahl	Aluminium	Sonstige	Ω	a b c d			V		
1-DY11-3/350	1-DY13-3/350	1-DY1x-3/350	350	3	2,7	9	8	9	LS 7
1-DY11-6/350	1-DY13-6/350	1-DY1x-6/350	350	6	3,2	12,5	9,4	14	LS 7

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

DY41

Doppel-DMS

Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10 $^{\text{-}6}\text{/K}$

DY43

Temperaturgang angepasst an Aluminium mit $\alpha = 23 \cdot 10^{-6} / K$

DY4x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Ab	messur	ngen (m	im)	Maximale Speise- spannung (*)	Löt- stütz- punkte
				Mess	gitter				
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	V	
1-DY41-1.5/350		1-DY4x-1.5/350(#)	350	1,5	1,8	5,5	6	5	LS 7
1-DY41-3/350	1-DY43-3/350	1-DY4x-3/350	350	3	2,7	8,2	8	8,5	LS 7
1-DY41-6/350		1-DY4x-6/350	350	6 3,2 10,7 9			9	13	LS 7

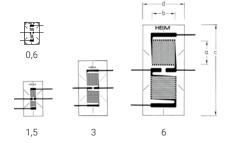
^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt. (1) Lötstützpunkte sind nicht zwingend erforderlich

^(#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

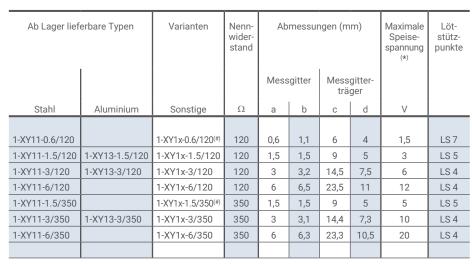
mit zwei Messgittern/T-Rosette/Doppelscher DMS

XY11

0°/90°-T-Rosette Temperaturgang angepasst an Stahl mit α = 10,8 · 10-6/K


XY13

Temperaturgang angepasst an Aluminium mit α = 23 \cdot 10-6/K

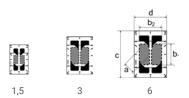

XY1x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Inhalt je Packung 5 Stück

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.


XY11_E

Doppelscher Dehnungsmesssstreifen Temperaturgang angepasst an Stahl mit α = 10.8 · 10.6/K

XY1x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Ab Lager liefer	bare Typen	Varianten	Nenn- wider- stand		Abmes	ssunge	n (mm)		Maximale Speise- spannung (*)	Löt- stütz- punkte
				Messgitter Messgitter träger				_		
Stahl	Aluminium	Sonstige	Ω	а	b ₁	b ₂	С	d	V	
1-XY11-1.5/350_E		1-XY1x-1.5/350_E#)	350	1,5	2,2	2,9	7,8	4,9	3,5	LS 7
1-XY11-3/350_E		1-XY1x-3/350_E	350	3	4,4	4,9	10	6,9	10,5	LS 5
		1-XY1x-6/350_E	350	6	6,5	10,2	12,3	11,7	15,5	LS 4

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

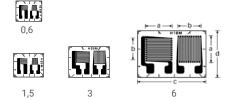
^(#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

^(#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

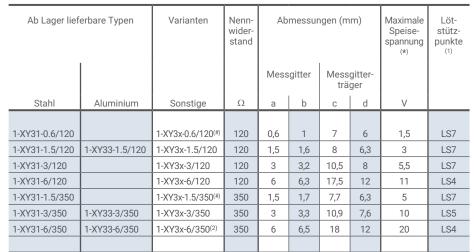
mit zwei Messgittern/T-Rosette

XY31

0°/90°-T-Rosette Temperaturgang angepasst an Stahl mit α = 10,8 · 10⁻⁶/K


XY33

Temperaturgang angepasst an Aluminium mit α = 23 \cdot 10-6/K


XY3x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

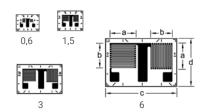
Inhalt je Packung 5 Stück

- (*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.
- (1) Lötstützpunkte sind nicht zwingend erforderlich
- (2) Mit der Temperaturanpassung an Quarzglas/Komposit (d.h. x=6) auch als Vorzugstyp (ab Lager verfügbar) lieferbar
- (#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

XY71

0°/90°-T-Rosette

Temperaturgang angepasst an Stahl mit a = $10.8 \cdot 10-6/K$


XY73

Temperaturgang angepasst an Aluminium mit $a = 23 \cdot 10-6/K$

XY7x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

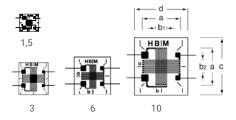
Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Ab	messur	ngen (m	m)	Maximale Speise- spannung (*)	Löt- stütz- punkte
				Messgitter Messgitter- träger a b c d					
Stahl	Aluminium	Sonstige	Ω					V	
		1-XY7x-0.6/120(#)	120	0 0,6 0,8 5,7 4,3				1	LS7
		1-XY7x-1.5/120	120	1,5 1,4 6,5 5,3				2,5	LS7
		1-XY7x-3/120	120	3	3	9,9	7,3	5,5	LS7
1-XY71-6/120		1-XY7x-6/120	120	6	5,7	16,2	11	11	LS4
1-XY71-1.5/350	1-XY73-1.5/350	1-XY7x-1.5/350 ^(#)	350	1,5	1,4	6,5	5,3	4,5	LS7
1-XY71-3/350	1-XY73-3/350	1-XY7x-3/350	350	3 3 9,9 7,3				9,5	LS5
		1-XY7x-6/350	350	6 5,7 16,2				18,5	LS4

- (*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.
- (1) Lötstützpunkte sind nicht zwingend erforderlich
- (#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

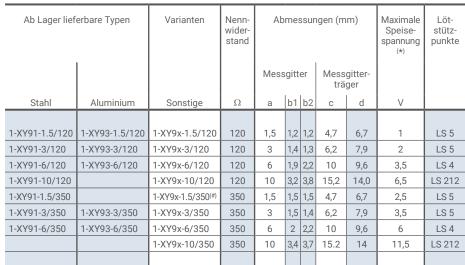
mit zwei Messgittern/T-Rosette

XY91

0°/90°-T-Rosette gestapelt Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10-6/K


XY93

Temperaturgang angepasst an Aluminium mit α = 23 \cdot 10-6/K


XY9x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

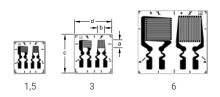
Inhalt je Packung 5 Stück

- (*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.
- (#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

XY101

0°/90°-T-Rosette

Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10⁻⁶/K


XY103

Temperaturgang angepasst an Aluminium mit α = 23 \cdot 10-6/K

XY10x

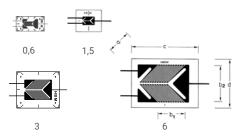
Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Ab	messur	ngen (m	m)	Maximale Speise- spannung (*)	Löt- stütz- punkte
				Mess	gitter	Mess trä			
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	V	
		1-XY10x-1.5/120	120	1,5	1,6	8,3	8	1,5	LS7
1-XY101-3/120		1-XY10x-3/120	120	3	3,2	9,8	10,6	3	LS5
		1-XY10x-6/120	120	6	6,5	16,5	18	5,5	LS4
1-XY101-3/350	1-XY103-3/350	1-XY10x-3/350	350	3	3,3	9,8	10,6	11	LS5
		1-XY10x-6/350	350	6 6 16,5 18				10	LS4

- (*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.
- (1) Lötstützpunkte sind nicht zwingend erforderlich

mit zwei Messgittern/Torsions-Scher-DMS


XY21

Scher-/Torsions-Halbbrücke Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10-6/K

XY2x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

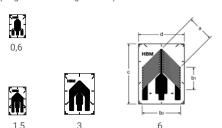
Inhalt je Packung 5 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Ab	mes	ssur	igen (m	m)	Maximale Speise- spannung (*)	Löt- stütz- punkte
			Messgitter Messgitter- träger α Δ a b1 b2 c d							
Stahl	Aluminium	Sonstige	e Ω a b1 b2 c d					V		
		1-XY2x-0.6/120 ^(#)	120	0,6	2,2	1,1	7,5	4	2,5	LS 7
1-XY21-1.5/120		1-XY2x-1.5/120	120	1,5	1,7	2,5	6,8	4,5	4,5	LS 7
1-XY21-3/120		1-XY2x-3/120	120	3	3,7	5,3	11,2	9,5	6	LS 4
1-XY21-6/120		1-XY2x-6/120	120	6	8	10	17,5	12,7	11	LS 4
1-XY21-1.5/350		1-XY2x-1.5/350 ^(#)	350	1,5	2,2	2,5	7,4	4,5	5	LS 7
1-XY21-3/350		1-XY2x-3/350	350	3	4,2	5,3	11,2	9,5	10	LS 4
1-XY21-6/350		1-XY2x-6/350	350					12,7	19	LS 4
		1-XY2x-3/700(#)	700	700 3 4,0 4,7 11,2 9,5				9,5	14	LS 5
		1-XY2x-6/700	700	6 7,8 9,2 17,5 12				12,7	27	LS 4

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

XY41

Scher-/Torsions-Halbbrücke Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10-6/K


XY43

Temperaturgang angepasst an Aluminium mit α = 23 \cdot 10-6/K

XY4x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Ab	mes	ssun	igen (m	m)	Maximale Speise- spannung (*)	Löt- stütz- punkte
				Messgitter Messgitter- träger Ω a b1 b2 c d						
Stahl	Aluminium	Sonstige	Ω	а	b1	b2	С	d	V	
1-XY41-0.6/120		1-XY4x-0.6/120 ^(#)	120	0,6	2,2	1,6	6,5	4,6	1,5	LS 7
1-XY41-1.5/120		1-XY4x-1.5/120	120	1,5	1,8	3,1	7,5	4,6	2,5	LS 7
1-XY41-3/120		1-XY4x-3/120	120	3	3	5,4	11	8	5	LS 7
1-XY41-6/120		1-XY4x-6/120	120	6	6	10,2	16	12,2	9,5	LS 4
1-XY41-1.5/350		1-XY4x-1.5/350 ^(#)	350	1,5	2,1	3,1	7,5	4,5	4	LS7
1-XY41-3/350	1-XY43-3/350	1-XY4x-3/350	350	3	4,2	5,6	11	8	9,5	LS 7
1-XY41-6/350		1-XY4x-6/350	350	6	6	10	16	12,2	16	LS 4
1-XY41-3/700		1-XY4x-3/700	700	00 3 4,2 5,6 11 8				8	13,5	LS 7
		1-XY4x-6/700	700	6 6,1 9,9 16 12,2					23	LS 4

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

^(#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

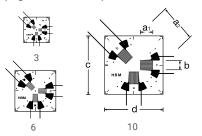
⁽¹⁾ Lötstützpunkte sind nicht zwingend erforderlich

^(#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

RY11

0°/45°/90°-Rosette

Temperaturgang angepasst an Stahl mit $\alpha = 10.8 \cdot 10^{-6} / K$


RY13

Temperaturgang angepasst an Aluminium mit α = 23 \cdot 10-6/K

RY1x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Maß a2 in mm)

Inhalt je Packung 5 Stück

mit drei Messgittern/Rosetten

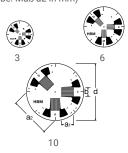
Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Abmessungen (mm)			Maximale Speise- spannung (*)	Löt- stütz- punkte		
				Messgitter Messgitter- träger a1 a2 b c d						
Stahl	Aluminium	Sonstige	Ω	a1	a2	b	С	d	V	
1-RY11-3/120		1-RY1x-3/120 ^(#)	120	0,8	3	0.8	7	7	1,5	LS7
1-RY11-6/120	1-RY13-6/120	1-RY1x-6/120	120	2	6	1,4	11	11	3	LS5
1-RY11-10/120		1-RY1x-10/120	120	2,9 10 2,7 15			15,4	15,4	5	LS4

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

RY31

0°/45°/90°-Rosette

Temperaturgang angepasst an Stahl mit a = 10,8 · 10-6/K


RY33

Temperaturgang angepasst an Aluminium mit a = 23 · 10-6/K

RY3x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Maß a2 in mm)

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand		Ab	messur	ngen (mm)	Maximale Speise- spannung (*)	Löt- stütz- punkte
				Messgitter Messgitter- träger					
Stahl	Aluminium	Sonstige	Ω	a1	a2	b	d	V	
1-RY31-3/120		1-RY3x-3/120(#)	120	0,8	3	0,8	6,9	1,5	LS7
1-RY31-6/120	1-RY33-6/120	1-RY3x-6/120	120	2 6 1,4 11			11	3	LS5
1-RY31-10/120		1-RY3x-10/120	120	2,9 10 2,7 15,4			15,4	5	LS4

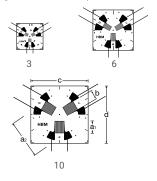
^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.
(1) Lötstützpunkte sind nicht zwingend erforderlich

^(#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

^(#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

mit drei Messgittern/Rosetten

RY41


0°/60°/120°-Rosette

Temperaturgang angepasst an Stahl mit $\alpha = 10.8 \cdot 10^{-6} / K$

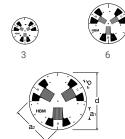
RY4x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Maß a2 in mm)

Inhalt je Packung 5 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Abmessungen (mm)					Maximale Speise- spannung (*)	Löt- stütz- punkte
				N	less	gitter	Mess trä	gitter- ger		
Stahl	Aluminium	Sonstige	Ω	a1	a2	b	С	d	V	
		1-RY4x-3/120 ^(#)	120			0,8	7	7	1,5	LS 7
1-RY41-6/120		1-RY4x-6/120	120	2	6	1,4	11	11	3	LS 5
1-RY41-10/120		1-RY4x-10/120	120	2,9	10	2,7	15,4	15,4	5	LS 4


^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

RY7x

0°/60°/120°-Rosette

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Maß a2 in mm)

Inhalt je Packung 5 Stück

Ab Lager lief	Ab Lager lieferbare Typen		Nenn- wider- stand		Ab	messur	ngen (mm)	Maximale Speise- spannung (*)	Löt- stütz- punkte
							Messgitter- träger		
Stahl	Aluminium	Sonstige	Ω	a1 a2 b		b	d	V	
		1-RY7x-3/120(#)	120	0,8	3	0,8	6,9	1,5	LS 7
		1-RY7x-6/120	120	2 6 1,3		1,3	11	3	LS 5
		1-RY7x-10/120	120	2,9 10 2,7			15,4	5	LS 4

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt. (1) Lötstützpunkte sind nicht zwingend erforderlich

^(#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

^(#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

mit drei Messgittern/Rosetten

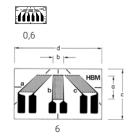
RY81

0°/45°/90°-Kantenrosette Temperaturgang angepasst an Stahl mit α = 10,8 · 10-6/K

RY83

Temperaturgang angepasst an Aluminium mit α = 23 \cdot 10-6/K

RY8x


Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

1,5

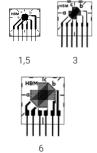
Inhalt je Packung 5 Stück

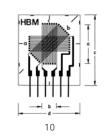
Ab Lager lief	Ab Lager lieferbare Typen		Nenn- wider- stand	Ab	messur	ngen (m	Maximale Speise- spannung (*)	Löt- stütz- punkte	
				Messgitter Messgitter- träger					
Stahl	Aluminium	Sonstige	Ω	a b c d			d	V	
		1-RY8x-0.6/120 ^(#)	120	0,6	1,1	4,8	8,7	1,6	LS 7
1-RY81-1.5/120		1-RY8x-1.5/120	120	1,5	1,2	8,2	14,6	2,5	LS 7
1-RY81-3/120	1-RY83-3/120	1-RY8x-3/120	120	3	1,1	9,7	14,6	3	LS 7
1-RY81-6/120		1-RY8x-6/120	120	6	3	13	22,9	7,5	LS 7
		1-RY8x-1.5/350 ^(#)	350	1,5	1,6	8,2	14,6	5	LS 7
		1-RY8x-3/350	350	3 1,2 9,7 14,6		14,6	5,5	LS 7	
1-RY81-6/350		1-RY8x-6/350	350	6	2,8	13,1	22,9	13	LS 5

- (*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.
- (1) Lötstützpunkte sind nicht zwingend erforderlich
- $^{(\#)}$ Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

RY91

0°/45°/90°-Rosette, Messgitter gestapelt Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10°6/K


RY93


Temperaturgang angepasst an Aluminium mit α = 23 \cdot 10-6/K

RY9x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Inhalt je Packung 5 Stück

Ab Lager lieferbare Typen		Varianten	Nenn- wider- stand	Ab	messur	ngen (m	Maximale Speise- spannung (*)	Löt- stütz- punkte	
				Messgitter Messgitter- träger					
Stahl	Aluminium	Sonstige	Ω	а	a b		d	V	
1-RY91-1.5/120		1-RY9x-1.5/120	120	1,5	1,3	9	8	1,5	LS 7
1-RY91-3/120	1-RY93-3/120	1-RY9x-3/120	120	3	1,3	9	9	2	LS 7
1-RY91-6/120	1-RY93-6/120	1-RY9x-6/120	120	6	2,6	12,5	11,4	4,5	LS 7
1-RY91-10/120	1-RY93-10/120	1-RY9x-10/120	120	10	4	17,5	16	7	LS 7
1-RY91-1.5/350		1-RY9x-1.5/350(#)	350	1,5	1,5	8	9	2,5	LS 7
1-RY91-3/350	1-RY93-3/350	1-RY9x-3/350	350	3	1,5	9	9	3,5	LS 7
1-RY91-6/350		1-RY9x-6/350	350	6	2,6	12,5	11,4	6	LS 7
		1-RY9x-10/350	350	10	4	17,6	16	11,5	LS 7

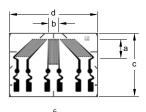
- (*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.
- (#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

mit drei Messgittern/Rosetten

RY101

Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10⁻⁶/K

RY103


RY10x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Ab Lager lief	Ab Lager lieferbare Typen		Nenn- wider- stand	Ab	messur	ngen (m	Maximale Speise- spannung (*)	Löt- stütz- punkte	
				Messgitter Messgitte träger					
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	V	
		1-RY10x-1.5/120	120	1,5	1,4	8,2	13,5	2,5	LS 7
1-RY101-3/120	1-RY103-3/120	1-RY10x-3/120	120	3	1,1	9,7	13,5	3	LS 7
		1-RY10x-6/120	120	6	3	16,4	22,9	7,5	LS 4
1-RY101-1.5/350	1-RY103-1.5/350	1-RY10x-1.5/350(#)	350	1,5	1,4	8,2	13,5	5	LS 7
1-RY101-3/350	1-RY103-3/350	1-RY10x-3/350	350	3	1,2	9,7	13,5	5,5	LS 7
1-RY101-6/350	1-RY103-6/350	1-RY10x-6/350 ⁽²⁾	350	6	2,8	16,4	22,9	12	LS 4

 ^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.
 (1) Lötstützpunkte sind nicht zwingend erforderlich
 (2) Mit der Temperaturanpassung an Quarzglas/Komposit (d.h. x=6) auch als Vorzugstyp (ab Lager verfügbar)

lieferbar

^(#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

VY11

0°/90°-T-Vollbrücke

Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10-6/K

VY1x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe
(Angabe: Gitterlänge in mm)

HBM

HBM

6

Inhalt je Packung 5 Stück

mit vier Messgittern/Vollbrücken

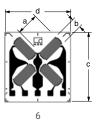
Ab Lager lieferbare Typen		Varianten	Nenn- wider- stand	Ab	messur	ngen (m	m)	Maximale Speise- spannung (*)	Löt- stütz- punkte
				Mess	gitter	Mess trä	gitter- ger		
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	V	
1-VY11-3/120		1-VY1x-3/120	120	3	7	13,5	13,5	6	LS 5/7
1-VY11-6/120		1-VY1x-6/120	120	6	14	23	23	12	LS 5/7

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

VY41

 $\begin{tabular}{ll} Scher-/Torsions-Vollbrücke \\ Temperaturgang angepasst an Stahl \\ mit $\alpha = 10.8 \cdot 10^{-6}$/K \\ \end{tabular}$

VY43


Temperaturgang angepasst an Aluminium mit α = 23 \cdot 10-6/K

VY4x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

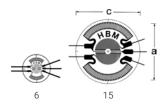
Ab Lager lieferbare Typen		Varianten	Nenn- wider- stand	Ab	messur	ngen (m	m)	Maximale Speise- spannung (*)	Löt- stütz- punkte
				Mess	gitter	Mess trä	gitter- ger		
Stahl	Aluminium	Sonstige	Ω	a b		С	d	V	
1-VY41-3/120		1-VY4x-3/120	120	3	1,3	9,8	10	3,5	LS7
		1-VY4x-6/120	120	6	2,7	18	17	7,5	LS4
1-VY41-3/350	1-VY43-3/350	1-VY4x-3/350	350	3	1,3	9,8	10	6	LS7
		1-VY4x-6/350	350	6	2,7	18	17	13	LS4

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

⁽¹⁾ Lötstützpunkte sind nicht zwingend erforderlich

mit vier Messgittern/Membranrosetten

MY21


Membranrosette

Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10⁻⁶/K

MY2x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

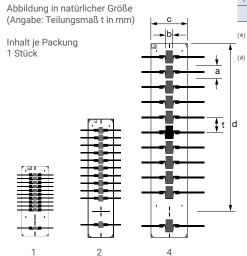
Abbildungen in natürlicher Größe (Angabe: Maß a in mm)

Inhalt je Packung 5 Stück

Ab Lager lief	Ab Lager lieferbare Typen		Nenn- wider- stand	Ab	messur	ngen (m	m)	Maximale Speise- spannung (*)	Löt- stütz- punkte
				Messgitter Messgitter- träger					
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	V	
		1-MY2x-6/120	120	6	_	7,3	-	3,5	LS 7
1-MY21-15/350		1-MY2x-15/350	350	15 - 17 -		13	LS 5		

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

DMS-Ketten


KY11

DMS-Kette

bestehend aus zehn Messgittern **parallel** zur Kettenachse und einem Kompensations-DMS. Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10⁻⁶/K

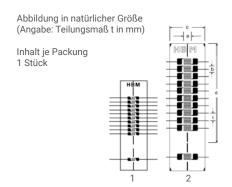
KY1x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Ab Lager lief	Ab Lager lieferbare Typen		Nenn- wider- stand	А	bmes	sunge	n (mm	n)	Maximale Speise- spannung (*)	Löt- stütz- punkte
				Messgitter Messgitt träger				Tei- lung		
Stahl	Aluminium	Sonstige	Ω	a b		С	d	t	V	
1-KY11-1/120		1-KY1x-1/120 ^(#)	120	0,6	1	7,2	14,5	1	2	LS 7
1-KY11-2/120		1-KY1x-2/120	120	1,5	1,3	6,7	24,5	2	2,5	LS 7
1-KY11-4/120		1-KY1x-4/120	120	3	2,1	9,7	44,5	4	5	LS 7

(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

(#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar


KY21

DMS-Kette

bestehend aus zehn Messgittern senkrecht zur Kettenachse und einem Kompensations-DMS. Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10-6/K

KY2x

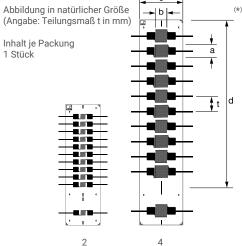
Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Abmessungen (mm)					Maximale Speise- spannung (*)	Löt- stütz- punkte
				3 3				Tei- lung		
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	t	V	
1-KY21-1/120		1-KY2x-1/120(#)	120	0,8	0,8	6,9	15	1	1,5	LS 7
1-KY21-2/120		1-KY2x-2/120	120	1,7	1,7	9,5	27	2	3,5	LS 7

(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

(#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

Serie Y DMS-Ketten


KY41

DMS-Kette

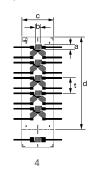
bestehend aus zehn Messgittern (fünf parallel, fünf senkrecht zur Kettenachse alternierend) und einem Kompensations-DMS.Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10-6/K.

KY4x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	А	bmes	sunge	n (mm	า)	Maximale Speise- spannung (*)	Löt- stütz- punkte
								Tei- lung		
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	t	V	
		1-KY4x-2/120	120	1,2	1,3	9,2	24,5	2	2,5	LS 7
1-KY41-4/120		1-KY4x-4/120	120	3	3	11,5	44,5	4	6	LS 5

(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.


KY3x

DMS-Rosettenkette

bestehend aus **fünf Rosetten** zu je drei Messgittern 0° / 60° / 120° und einem Kompensations-DMS. Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildung in natürlicher Größe (Angabe: Teilungsmaß t in mm)

Inhalt je Packung 1 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	А	bmes	sunge	n (mn	ח)	Maximale Speise- spannung (*)	Löt- stütz- punkte
				3			Tei- lung			
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	t	V	
		1-KY3x-4/120	120	1,2	1,3	8,3	24	4	2,5	LS 7

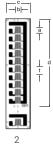
(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

Serie Y

DMS-Ketten

KY5x

DMS-Kette


bestehend aus zehn Messgittern mit gemeinsamem Anschluss, parallel zur Kettenachse und einem Kompensations-DMS

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

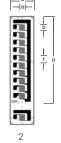
Abbildung in natürlicher Größe (Angabe: Teilungsmaß t in mm)

Inhalt je Packung 5 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	А	bmes	sunge	n (mm	1)	Maximale Speise- spannung (*)	Löt- stütz- punkte
				Messgitter Messgitter- träger lung						
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	t	V	
		1-KY5x-1/120 ^(#)	120	0,6	1,2	5,6	12,8	1	1,5	-
		1-KY5x-2/120	120	1,5	1,4	6	22,8	2	2,5	_

 ^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.
 (#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

KY6x


bestehend aus zehn Messgittern mit gemeinsa-mem Anschluss, **senkrecht** zur Kettenachse und

einem Kompensations-DMS. Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildung in natürlicher Größe (Angabe: Teilungsmaß t in mm)

Inhalt je Packung 5 Stück

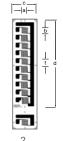
Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	А	bmes	sunge	n (mm	1)	Maximale Speise- spannung (*)	Löt- stütz- punkte
				Messgitter Messgitter- träger lung						
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	t	V	
		1-KY6x-1/120 ^(#)	120	0,8	0,7	5,6	12,8	1	1,2	-
		1-KY6x-2/120	120	1,3	1,6	6	22,8	2	2,5	_

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

^(#) Typen sind nur für Aluminium, ferritischen oder austenitischen Stahl angepasst lieferbar

Serie Y

DMS-Ketten


KY7x

DMS-Kette

bestehend aus zehn Messgittern mit gemeinsamem Anschluss, (fünf parallel, fünf senkrecht zur Kettenachse alternierend) und einem Kompensations-DMS. Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildung in natürlicher Größe (Angabe: Teilungsmaß t in mm)

Inhalt je Packung 5 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	А	bmes	sunge	n (mm	1)	Maximale Speise- spannung (*)	Löt- stütz- punkte
Stahl	Aluminium	Sonstige	Ω	Mess	gitter	Mess trä		Tei- lung	V	
Starii	Aldiffillidiff	Johnstige	32	а	D	C	u	·	V	
		1-KY7x-2/120	120	1,3	1,5	6	22,8	2	2,5	_

(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

KY81

DMS-Kette

bestehend aus zehn Messgittern parallel zur Kettenachse und einem Kompensations-DMS. Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10-6/K.

KY8x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildung in natürlicher Größe (Angabe: Teilungsmaß t in mm)

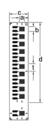
Inhalt je Packung 5 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	А	bmes	sunge	n (mm	1)	Maximale Speise- spannung (*)	Löt- stütz- punkte
				Mess	gitter	Mess trä		Tei- lung		
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	t	V	
1-KY81-2/120		1-KY8x-2/120	120	1	1	5	21,7	2	2	-
				l						

(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

KY91

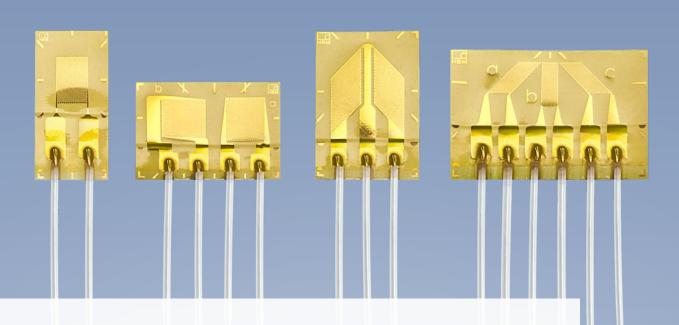
DMS-Kette


bestehend aus 10 Messgittern senkrecht zur Kettenachse und 1 Kompensations-DMS. Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10-6/K.

KY9x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildung in natürlicher Größe (Angabe: Teilungsmaß t in mm)


Inhalt je Packung 5 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	А	bmes	sunge	n (mm	1)	Maximale Speise- spannung (*)	Löt- stütz- punkte
				Mess	gitter	Mess trä	_	Tei- lung		
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	t	V	
1-KY91-2/120		1-KY9x-2/120	120	1,2	1,2	5	21,7	2	2	-

(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

DMS mit Anschlusskabel K-CLY.../K-CDY.../K-CXY.../K-CRY...

und RJ11-Stecker (optional)

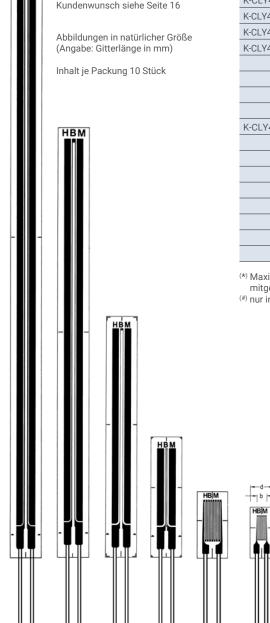
- Löten an der Messstelle entfällt
- bewährte DMS-Qualität der Serie Y jetzt auch mit vorkonfektioniertem TPE-Flachbandkabel
- 50 mm fluorpolymerisolierte Litze, optional Kabellängen von 0,5 m bis 10 m
- 3- und 4-Leiter-Ausführungen
- Linear-DMS, Doppel-DMS, T-Rosetten, Scher-Torsions-DMS und Dreimessgitter-Rosetten
- Fluorpolymerisolierte Litze am DMS verhindert das Ankleben des Kabels bei der Installation

echnische Daten – K-CLY/K-CDY.	/K-C>	KY / K-CRY
DMS-Konstruktion		Folien-DMS mit eingebettetem Messgitter
Messgitter Werkstoff Dicke	μm	Konstantan 3,8 oder 5, je nach DMS-Typ
Träger Werkstoff Dicke	μm	Polyimid 55 ± 5
Abdeckung Werkstoff	μπ	Polyimid
Gesamtdicke DMS	μm	81 ±22
Anschlüsse		Fluorpolymerisolierte Litze, Querschnitt 0,06 mm², ca. 50 mm lang, Außendurchmesser 0,6 mm, über Criverbindung weiterverbunden an Flachbandleitungen AWG28 (TPE-isoliert) in 3-, oder 4-Leiter-Schaltung in verschiedenen Längen, Querschnitt 0,09 mm² und Audurchmesser von ca. 0,95 mm pro Ader
Nennwiderstand ⁽¹⁾ Widerstandstoleranz ⁽¹⁾	Ω %	120, 350, 700 oder 1.000, je nach DMS-Typ ±0,35
bei 0,6 mm und 1,5 mm Messgitterlänge	%	±1
k-Faktor k-Faktor-Toleranz ⁽¹⁾	%	ca. 2 (auf der Packung ausgewiesen) ±1
bei 0,6 mm und 1,5 mm Messgitterlänge Temperaturkoeffizient des k-Faktors ⁽¹⁾	% 1/K	±1,5 (115±10) · 10 ⁻⁶
Nennwert des Temperaturkoeffizienten des k-Faktors		auf jeder Packung angegeben
Referenztemperatur Gebrauchstemperaturbereich	°C	23 mit Kabel ohne Kabel
für statische Messungen (nullpunktbezogenen) für dynamische Messungen (nicht nullpunktbezogenen)	°C	-40+150 -40+155 -10+150 -10+155
Querempfindlichkeit		auf jeder Packung angegeben;
bei Referenztemperatur unter Verwendung von Klebstoff Z 70 am DMS-Typ LY41-3/120	%	+0,2
Temperaturgang		auf jeder Packung angegeben
Temperaturgang nach Wahl angepasst an Wärmeausdehnungskoeffizienten α für ferritischen Stahl	1/K	10,8 · 10 ⁻⁶
lpha für Aluminium $lpha$ für Kunststoff	1/K 1/K	23 · 10·6 65 · 10·6
α für austenitischen Stahl	1/K	16 · 10·6 9 · 10·6
α für Titan α für Molybdän	1/K 1/K	5,4 · 10 ⁻⁶
α für Quarzglas Toleranz des Temperaturganges ⁽¹⁾	1/K 1/K	0,5 · 10·6 ±0,3 · 10·6
Anpassung des Temperaturgangs im Bereich ⁽²⁾	°C	-10+120
Mechanische Hysterese bei Referenztemperatur und Dehnung ϵ =±1.000 µm/m am DMS-Typ LY41-3/120		
bei 1. Belastungszyklus und Klebstoff Z 70 bei 3. Belastungszyklus und Klebstoff Z 70	μm/m μm/m	1 0,5
bei 1. Belastungszyklus und Klebstoff X 60	μm/m	2,5
bei 3. Belastungszyklus und Klebstoff X 60	μm/m	1
Maximale Dehnbarkeit bei Referenztemperatur unter Verwendung von Klebstoff Z 70 am DMS-Typ LY41-3/120		
Dehnungsbetrag in positiver Richtung	μm/m	20.000 (≙ 2 %)
Dehnungsbetrag in negativer Richtung	μm/m	25.000 (≙ 2,5%)
Dauerschwingverhalten bei Referenztemperatur unter Verwendung von Klebstoff Z70 am DMS-Typ LY41-3/120 Erreichbare Lastspielzahl L _w bei		
Wechseldehnung ε_W =±1.000 µm/m und	,	4 407 (0.11)
Nullpunktänderung ϵ_{m} $\Delta \leq 300$ Nullpunktänderung ϵ_{m} $\Delta \leq 30$	μm/m μm/m	> 1 · 10 ⁷ (Prüfung wurde bei 1 · 10 ⁷ abgebrochen) 5 · 10 ⁶
Kleinster Krümmungsradius längs und quer bei Referenztemperatur		0.2
im Bereich des Messgitters im Bereich der Lötpunkte	mm mm	0,3 10
Verwendbare Befestigungsmittel kalt härtende Klebstoffe		Z70; X60; X280
heiß härtende Klebstoffe ⁽³⁾		EP150, EP310N

Eigenschaften der DMS ohne Flachbandleitung (inkl. fluorpolymerisolierter Draht)
 Die Anpassung an Kunststoff (Kennziffer 8) ist nur im Temperaturbereich -10... +50°C möglich
 Gebrauchstemperaturbereich der DMS beachten

(inkl. fluorpolymerisoliertem Draht) mit einem Messgitter

K-CLY41


Linear-DMS

Temperaturgang angepasst an Stahl mit α = 10,8 · 10⁻⁶/K

 $\begin{array}{l} \text{K-CLY43} \\ \text{Temperaturgang angepasst an Aluminium} \\ \text{mit } \alpha = 23 \cdot 10^{-6} / \text{K} \end{array}$

K-CLY4x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Kurzfristig lie	ferbare Typen	Varianten	Nenn- wider- stand	Ab	messui	ngen (m	m)	Maximale Speise- spannung (*)	Löt- stütz- punkte
				Mess	gitter	Mess trä			nicht erforderlich
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	V	e
		K-CLY4x-0.6/120 ^(#)	120	0,6	1,1	6	4	1,5	
		K-CLY4x-1.5/120	120	1,5	1,2	7	5	2,5	
K-CLY41-3/120		K-CLY4x-3/120	120	3	1,2	8	5	3,5	
K-CLY41-6/120	K-CLY43-6/120	K-CLY4x-6/120	120	6	2,7	13,9	5,9	8	
K-CLY41-10/120		K-CLY4x-10/120	120	10	4,9	18	8	14	
K-CLY41-20/120		K-CLY4x-20/120	120	20	0,5	31,8	8,2	6,5	
K-CLY41-50/120		K-CLY4x-50/120	120	50	0,8	63,6	8,2	12	
		K-CLY4x-100/120	120	100	1	114,8	8,2	19	
		K-CLY4x-150/120	120	150	1,2	165,6	8,2	25	
		K-CLY4x-1.5/350 ^(#)	350	1,5	2,3	9,2	5,9	6,5	
		K-CLY4x-3/350	350	3	2,5	10,9	5,9	9	
K-CLY41-6/350		K-CLY4x-6/350	350	6	2,8	13,9	5,9	15	
		K-CLY4x-10/350	350	10	5	18	8	24	
		K-CLY4x-3/700	700	3	2,7	10,9	5,9	13	
		K-CLY4x-6/700	700	6	4,1	13,9	5,9	23	
		K-CLY4x-10/700	700	10	5	18	8	33	
		K-CLY4x-3/1000(#)	1.000	3	2,7	10,9	5,9	16	
		K-CLY4x-6/1000	1.000	6	4,2	13,9	5,9	27	
		K-CLY4x-10/1000	1.000	10	5	18	8	40	

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

Verfügbare Kabellängen siehe Seite 47

150

100

50

20

10

3

1,5

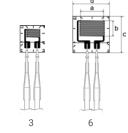
0,6

^(#) nur in den Temperaturganganpassungen ferritischer Stahl, austenitischer Stahl und Aluminium erhältlich

(inkl. fluorpolymerisoliertem Draht) mit einem Messgitter, mit zwei Messgittern

K-CLY91

Linear DMS


Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10 $^{\text{-}6}/\text{K}$

K-CLY9x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildung in natürlicher Größe

Inhalt je Packung 10 Stück

Kurzfristig lie	ferbare Typen	Varianten	Nenn- wider- stand	Ab	messur	ngen (m	m)	Maximale Speise- spannung (*)	Löt- stütz- punkte
			_		gitter	Mess trä		nicht erforderlich	
Stahl	Aluminium	Sonstige	Ω	a b c d				V	ē
		K-CLY9x-1.5/120_E	120	1,5	2	6,6	7	3,5	
K-CLY91-3/120_E		K-CLY9x-3/120_E	120	3	2	7	6,3	4,5	
		K-CLY9x-6/120_E	120	6	4	9,5	9,5	9	
		K-CLY9x-1.5/350_E	350	1,5	2	6,6	4,7	5	
K-CLY91-3/350_E		K-CLY9x-3/350_E	350	3	2	7	6,3	7,5	
		K-CLY9x-6/350_E	350	6	3,8	9,5	9,5	15	

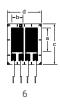
^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

K-CDY41

Doppel-DMS

1,5

Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10-6/K


K-CDY4x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildung in natürlicher Größe

Inhalt je Packung 5 Stück

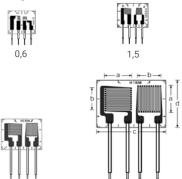
Kurzfristig lie	ferbare Typen	Varianten	Nenn- wider- stand	Ab	messur	ngen (m	m)	Maximale Speise- spannung (*)	Löt- stütz- punkte
0.11			Ω	Mess	ı I	Mess trä		nicht erforderlich	
Stahl	Aluminium	Sonstige	5.2	а	b	С	d	V	Ψ
		K-CDY4x-3/350	350	3	2,7	8,2	8	8,5	
K-CDY41-6/350		K-CDY4x-6/350	350	6	3,2	10,7	9	13	

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

(inkl. fluorpolymerisoliertem Draht) mit zwei Messgittern

K-CXY31

0°/90°-T-Rosette Temperaturgang angepasst an Stahl mit α = 10,8 · 10.6/K


K-CXY33

Temperaturgang angepasst an Aluminium mit α = 23 \cdot $10^{\text{-}6}\text{/K}$

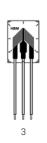
K-CXY3x

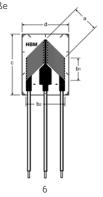
Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildung in natürlicher Größe

Inhalt je Packung 5 Stück

Kurzfristig lie	ferbare Typen	Varianten	Nenn- wider- stand	Ab	messur	ngen (m	m)	Maximale Speise- spannung (*)	Löt- stütz- punkte
				Mess	gitter	Mess trä		nicht erforderlich	
Stahl	Aluminium	Sonstige	Ω	a b c d				V	erf
		K-CXY3x-0.6/120(#)	120	0,6	1	7	6	1,5	
		K-CXY3x-1.5/120	120	1,5	1,6	8	6,3	3	
		K-CXY3x-3/120	120	3	3,2	10,5	8	5,5	
K-CXY31-6/120		K-CXY3x-6/120	120	6	6,3	17,5	12	11	
		K-CXY3x-1.5/350(#)	350	1,5	1,7	7,7	6,3	5	
K-CXY31-3/350		K-CXY3x-3/350	350	3	3,3	10,9	7,6	10	
	K-CXY33-6/350	K-CXY3x-6/350	350	6 6,5 18 12			20		


- (*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.
- (#) nur in den Temperaturganganpassungen ferritischer Stahl, austenitischer Stahl und Aluminium erhältlich


K-CXY4x

Scher-/Torsions-Halbbrücke

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildung in natürlicher Größe

Inhalt je Packung 5 Stück

Kurzfristig lieferbare Typen		Varianten	Nenn- wider- stand	Abmessungen (mm)					Maximale Speise- spannung (*)	Löt- stütz- punkte
0: 11						Messgitter- träger			nicht erforderlich	
Stahl	Aluminium	Sonstige	Ω	а	bΊ	b2	С	d	V	Ū
		K-CXY4x-3/120	120	3	3	5,4	11	8	5	
		K-CXY4x-6/120	120	6	6	10,2	16	12,2	9,5	
		K-CXY4x-3/350	350	3	4,2	5,6	11	8	9,5	
		K-CXY4x-6/350	350	6	6	10	16	12,2	16	
		K-CXY4x-3/700	700	3	4,2	5,6	11	8	13,5	
		K-CXY4x-6/700	700	6	6,1	9,9	16	12,2	23	

(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.


(inkl. fluorpolymerisoliertem Draht) mit drei Messgittern

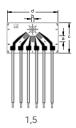
K-CRY6xK

0°/45°/90°-Kanten-Bohrlochrosette Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildung in natürlicher Größe

Inhalt je Packung 5 Stück

Kurzfristig lie	Kurzfristig lieferbare Typen		Nenn- wider- stand	Abmessungen (mm)				Maximale Speise- spannung (*)	Löt- stütz- punkte
Stahl	Aluminium	Sonstige	Ω	Messgitter a b		Messgitter- träger		V	nicht erforderlich
Otalii.	7.1.0.1.11.11.0.11.	conougo							
		K-CRY6x-1.5/120K ⁽¹⁾	120	1,5	0,8	7,2	10,2	2	


^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

K-CRY6xR

0°/45°/90°-Kanten-Bohrlochrosette Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildung in natürlicher Größe

Inhalt je Packung 5 Stück

Kurzfristig lieferbare Typen		Varianten	Nenn- wider- stand	Abmessungen (mm)			Maximale Speise- spannung (*)	Löt- stütz- punkte	
Stahl	Aluminium	Sonstige	Ω	Messgitter		träger		V	nicht erforderlich
		K-CRY6x-1.5/120R ⁽¹⁾	120	1,5	0,8	8	13,5	2	

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

⁽¹⁾ nur in der Temperaturganganpassung ferritischer Stahl erhältlich

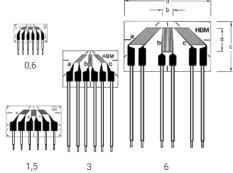
⁽¹⁾ nur in der Temperaturganganpassung ferritischer Stahl erhältlich

(inkl. fluorpolymerisoliertem Draht) mit drei Messgittern

K-CRY81

0°/45°/90°-Kantenrosette Temperaturgang angepasst an Stahl mit α = 10,8 · 10°6/K

K-CRY83


Temperaturgang angepasst an Aluminium mit α = 23 \cdot $10^{\text{-}6}\text{/K}$

K-CRY8x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildung in natürlicher Größe

Inhalt je Packung 5 Stück

Kurzfristig lieferbare Typen		Varianten	Nenn- wider- stand	Ab	messur	ngen (m	Maximale Speise- spannung (*)	Löt- stütz- punkte	
						Messgitter- träger			nicht erforderlich
Stahl	Aluminium	Sonstige	Ω	a b		С	d	V	e
		K-CRY8x-0.6/120 ^(#)	120	0,6	1,1	4,8	8,7	1,6	
		K-CRY8x-1.5/120	120	1,5	1,2	8,2	14,6	2,5	
K-CRY81-3/120		K-CRY8x-3/120	120	3	1,1	9,7	14,6	3	
K-CRY81-6/120	K-CRY83-6/120	K-CRY8x-6/120	120	6	3	13	22,9	7,5	
		K-CRY8x-1.5/350 ^(#)	350	1,5	1,6	8,2	14,6	5	
		K-CRY8x-3/350	350	3	1,2	9,7	14,6	5,5	
		K-CRY8x-6/350	350	6 2,8		13,1	22,9	13	

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

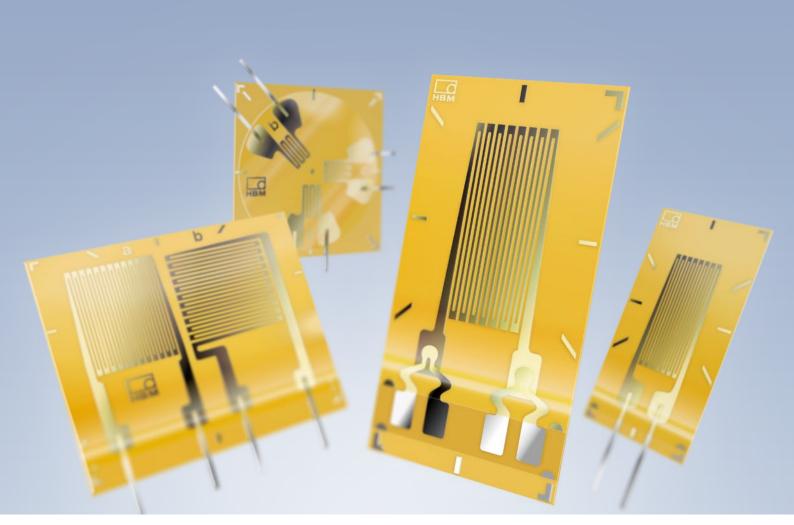
^(#) nur in den Temperaturganganpassungen ferritischer Stahl, austenitischer Stahl und Aluminium erhältlich

DMS mit Anschlusskabel und RJ11-Stecker

Verfügbare Kabellängen (montiertes TPE-Flachbandkabel)

K-CLY4 / K-0	CLY9 / K-CDY4 / K-CXY3	3	
Kabellänge	3-Leiterausführung	4-Leiterausführung	4-Leiterausführung +RJ11
0,5 m	V	V	V
1 m	V	V	V
2 m	V	V	V
3 m	V	✓	V
5 m	V	✓	V
7,5 m	V	✓	V
10 m	V	V	V

K-CXY4			
Kabellänge	3-Leiterausführung	4-Leiterausführung	4-Leiterausführung +RJ11
0,5 m	V	-	-
1 m	V	-	-
2 m	V	-	-
3 m	V	-	-
5 m	V	-	-
7,5 m	V	-	-
10 m	V	-	-


K-CRY6(1) /	K-CRY8		
Kabellänge	3-Leiterausführung	4-Leiterausführung	4-Leiterausführung +RJ11(1)
0,5 m	V	V	V
1 m	V	V	V
2 m	V	✓	V
3 m	V	✓	V
5 m	V	V	V
7,5 m	V	V	V
10 m	V	V	V

 $^{^{(1)}}$ Die Option "Anschlusskabel in Vierleiterausführung mit RJ11-Stecker" ist für K-CRY6... nicht verfügbar

DMS der Serie C

- Der Spezialist für extreme Temperaturen (-269... +250°C)
- Temperaturgang angepasst im Bereich 200 ... + 250°C
- Flexibel, daher einfache Handhabung

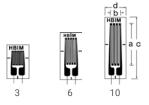
DMO K It'		F. P. DMO 21 1 1 11 1 14 21
DMS-Konstruktion Messaitter		Folien-DMS mit eingebettetem Messgitter
Werkstoff		CrNi-Speziallegierung
Dicke	μm	5
Träger Werkstoff		Polyimid
Dicke	μm	55 ± 5
Abdeckung		6.1
Werkstoff Gesamtdicke DMS	LIPO	Polyimid 81 ± 12
Anschlüsse	μm	nickelplattierte Kupferbänder, ca. 30 mm lang
bei DMS ohne Anschlussbändchen		zugentlastete Lötflächen, vier-Leiter, aus Kupfer-Be
Nennwiderstand	Ω	120, 350 je nach DMS-Typ
Widerstandstoleranz	%	±0,3 ohne; ±0,35 mit Anschlussbändchen
k-Faktor		ca. 2,2
Nennwert des k-Faktors k-Faktor-Toleranz	%	auf jeder Packung angegeben ±1
Temperaturkoeffizient des k-Faktors	/0	±। auf jeder Packung angegeben
· · · · · · · · · · · · · · · · · · ·	°C	23
Referenztemperatur Gebrauchstemperaturbereich		
für statische, d. h. nullpunktbezogene Messungen für dynamische, d. h. nicht nullpunktbezogene Messungen	°C °C	-200 +200 -269 +250
rai aynamische, a.n. mont nanpanktbezogene wessangen	C	207 T 2JU
Querempfindlichkeit		auf jeder Packung angegeben
bei Referenztemperatur unter Verwendung von Klebstoff Z 70 am DMS-Typ LC11-6/120	%	-0,15
an owo typ corr of teo		
Temperaturgang		auf jeder Packung angegeben
Temperaturgang angepasst an Wärmeausdehnungskoeffizienten α für ferritischen Stahl	1 ///	10.8 · 10 ⁻⁶
α für Aluminium	1/K 1/K	23 · 10 · 6
Toleranz des Temperaturgangs	1/K	$\pm 0.6 \cdot 10^{-6}$
Anpassung des Temperaturgangs im Bereich	°C	-200+250
Mechanische Hysterese ⁽¹⁾		
bei Referenztemperatur und Dehnung ϵ = $\pm 1.000 \mu m/m$		
am DMS-Typ LC11-6/120		1.05
bei 1. Belastungszyklus und Klebstoff Z 70 bei 3. Belastungszyklus und Klebstoff Z 70	μm/m μm/m	1,25 0,75
ber o. belastangszyklas ana kiebston z 70	μπηπ	0,70
Maximale Dehnbarkeit ⁽¹⁾		
bei Referenztemperatur unter Verwendung von Klebstoff Z 70 am DMS-Typ LC11-6/120		
Dehnungsbetrag ε bei positiver Richtung	μm/m	20.000 (≙ 2 %)
Dehnungsbetrag ε bei negativer Richtung	μm/m	100.000 (≜ 10 %)
Daugrachwingverhalten(1)		
Dauerschwingverhalten ⁽¹⁾ bei Referenztemperatur unter Verwendung von Klebstoff Z 70		
am DMS-Typ LC11-6/120		
Erreichbare Lastspielzahl L _w bei		
Wechseldehnung ε_W =±1.000 µm/m und Nullpunktänderung $\varepsilon_m \Delta \le 300 \mu$ m/m		>> 10 ⁷ (Prüfung wurde bei 10 ⁷ abgebrochen)
Nullpunktänderung $\epsilon_m \Delta \le 300 \ \mu m/m$ $\epsilon_m \Delta \le 30 \ \mu m/m$		> 10 ⁷ (Prüfung wurde bei 10 ⁷ abgebrochen)
Kleinster Krümmungsradius längs und quer bei Referenztemperatur		
im Bereich des Messgitters	mm	0,3
im Bereich Lötlächen	mm	2
Verwendbare Befestigungsmittel kalt härtende Klebstoffe		7 70· V 60· V 280
heiß härtende Klebstoffe		Z 70; X 60; X 280 EP 150; EP 310N

⁽¹⁾ Die Daten sind abhängig von den verschiedenen Parametern der Applikation und deshalb nur für repräsentative Beispiele angegeben.

Serie C

mit einem Messgitter

LC11


Linear-DMS

Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10 $^{6}/K$

LC1x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Inhalt je Packung 10 Stück

Ab Lager lieferbare Typen		Varianten	Nenn- wider- stand	Abmessungen (mm)				Maximale Speise- spannung (*)	Löt- stütz- punkte
				Messgitter N		Messgitter- träger			
Stahl	Aluminium	Sonstige ⁽¹⁾	Ω	а	b	С	d	V	
1-LC11-3/120			120	3	3,3	8,5	5,5	6	LS 5
1-LC11-6/120			120	6	3,2	12	5,5	9	LS 5
		1-LC1x-10/120	120	10	3,2	16	5,5	11	LS 5
1-LC11-1.5/350		1-LC1x-1.5/350	350	1,5	3,3	6,4	5,5	6	LS5
1-LC11-3/350		1-LC1x-3/350	350	3	3,4	8,5	5,5	10	LS 5
1-LC11-6/350		1-LC1x-6/350	350	6	3,3	12	5,5	14	LS 5
1-LC11-10/350		1-LC1x-10/350	350	10	10 3,3 16 5,5		18	LS 5	

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

LC6x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Inhalt je Packung 10 Stück

Ab Lager lieferbare Typen		Varianten	Nenn- wider- stand	Abmessungen (mm)			Maximale Speise- spannung (*)	Löt- stütz- punkte	
				Messgitter Messgitter- träger					
Stahl	Aluminium	Sonstige ⁽¹⁾	Ω	а	b	С	d	V	
		1-LC6x-3/350	350	3	3,4	11	8	9,5	-
		1-LC6x-6/350	350	6	3,4	14	8	16	_

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

⁽¹⁾ nur für Aluminium oder ferritischen Stahl angepasst lieferbar

Maximale Dehnbarkeit ⁽²⁾ bei Referenztemperatur unter Verwendung von Klebstoff Z 70		
am DMS-Typ LC61-3/350 Dehnungsbetrag ε bei positiver Richtung	um/m	25.000 (≙ 2,5%)
Dehnungsbetrag ε bei positiver Richtung Dehnungsbetrag ε bei negativer Richtung	um/m	50.000 (<u>△</u> 5%)
Kleinster Krümmungsradius längs und guer bei Referenztemperatur	рини	00.000 (= 0.0)
im Bereich des Messgitters	mm	0,5
im Bereich Lötflächen	mm	10

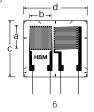
⁽²⁾ Die Daten sind abhängig von den verschiedenen Parametern der Installation und deshalb nur für repräsentative Beispiele angegeben.

... übrige technische Daten wie auf Seite 49

⁽¹⁾ nur für Aluminium oder ferritischen Stahl angepasst lieferbar

Serie C

mit zwei Messgittern, mit drei Messgittern


XC11

XC1x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Inhalt je Packung 5 Stück

Ab Lager lieferbare Typen		Varianten	Nenn- wider- stand	Abmessungen (mm)				Maximale Speise- spannung (*)	Löt- stütz- punkte
							gitter- ger		
Stahl	Aluminium	Sonstige ⁽¹⁾	Ω	а	b	С	d	V	
		1-XY1x-1.5/350 ⁽²⁾	350	1,5	1,5	6	8,4	6	LS 5
1-XC11-3/350		1-XC1x-3/350	350	3	3,3	10	10	10	LS 7
		1-XC1x-6/350	350	6 6,4		16	18	20	LS 4

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

RC11

0°/45°/90°-Rosette

Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10⁻⁶/K

RC1x

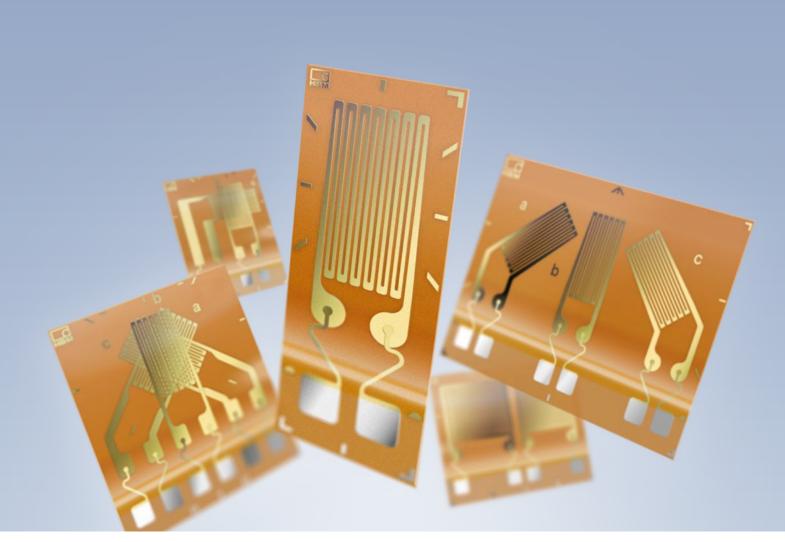
Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Maß a2 in mm)

Inhalt je Packung 5 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand		Ab	messur	ngen (m	m)	Maximale Speise- spannung (*)	Löt- stütz- punkte
				Messgitter Messgitter träger						
Stahl	Aluminium	Sonstige ⁽¹⁾	Ω	a1	a2	b	С	d	V	
1-RC11-4/350		1-RC1x-4/350	350	1,2	4	1,1	8	8	3,5	LS 7
		1-RC1x-6/350	350	2 6 1,3			11	11	5	LS 5

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.


⁽¹⁾ nur für Aluminium oder ferritischen Stahl angepasst lieferbar

⁽²⁾ nur für ferritischen Stahl angepasst lieferbar

⁽¹⁾ nur für Aluminium oder ferritischen Stahl angepasst lieferbar

DMS der Serie M

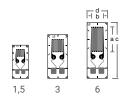
- Hohe Wechsellastfestigkeit
- Alle DMS mit großen zugentlasteten Lötflächen
- Für Hochtemperaturbereich (+300°C)
- Breites Spektrum unterschiedlicher Typen

DMS-Konstruktion		Folien-DMS mit eingebettetem Messgitter
Messgitter		
Werkstoff Dicke	μm	CrNi-Speziallegierung 5
- räger	p	, and the second
Werkstoff Dicke	μm	Glasfaserverstärktes Phenolharz 35 ± 10
Abdeckung	рт	
Werkstoff Gesamtdicke DMS		Polyimid-Folie 65 ± 15
Anschlüsse	μm	Zugentlastete Lötflächen aus Kupfer-Berylium
Vennwiderstand	Ω	350 oder 1.000, je nach DMS-Typ
Viderstandstoleranz ⁽²⁾	%	±0,3
r-Faktor		ca. 2,2
Nennwert des k-Faktors «-Faktor-Toleranz bei Messgitterlänge < 3 mm	%	auf jeder Packung angegeben ±1,5
bei Messgitterlänge ≥ 3 mm	5	± 0,7
Femperaturkoeffizient des k-Faktors		auf jeder Packung angegeben
Referenztemperatur	°C	23
Gebrauchstemperaturbereich für statische, d. h. nullpunktbezogene Messungen	°C	-200 + 250
für dynamische, d.h. nicht nullpunktbezogene Messungen ⁽³⁾	°C	-200 + 300
Querempfindlichkeit		auf jeder Packung angegeben
bei Referenztemperatur unter Verwendung von Klebstoff Z70 am DMS Typ LM11-6/350GE	%	-4
emperaturgang		auf jeder Packung angegeben
Femperaturgang nach Wahl angepasst an Wärmeausdehnungskoeffizienten	4.07	100 10 (
α für ferritischen Stahl $α$ für Aluminium	1/K 1/K	10,8 · 10 ⁻⁶ 23 · 10 ⁻⁶
lpha für austenitischen Stahl	1/K	16 · 10 ⁻⁶
α für Titan $α$ für Molybdän	1/K 1/K	9 · 10 ⁻⁶ 5.4 · 10 ⁻⁶
lpha für Quarzglas	1/K	0,5 · 10 - 6
Foleranz des Temperaturgangs Anpassung des Temperaturgangs im Bereich	1/K °C	±0,6 · 10 ⁻⁶ -200 +250
		200 • 200
Mechanische Hysterese ⁽¹⁾ bei Referenztemperatur unter Verwendung von Klebstoff EP310N		
am DMS Typ LM11-6/350GE pei 1. Belastungszyklus und Klebstoff EP310N	μm/m	±0,5
pei 3. Belastungszyklus und Klebstoff EP310N	μm/m	± 0,5
Maximale Dehnbarkeit ⁽¹⁾		
bei Referenztemperatur unter Verwendung von Klebstoff Z70		
am DMS Typ LM11-6/350GE Dehnungsbetrag ε bei positiver Richtung	μm/m	10.000 (1%)
Dehnungsbetrag ε bei negativer Richtung	μm/m	15.000 (1,5%)
Dauerschwingverhalten ⁽¹⁾		
bei Referenztemperatur unter Verwendung von Klebstoff EP310N am DMS Typ LM11-6/350GE bis zum Ausfallkriterium		
Erreichbare Lastspielzahl L _w bei Wechseldehnung		
$\varepsilon_{W} = \pm 2.000 \mu \text{m/m}$ und Nullpunktänderung $\varepsilon_{\text{m}} \Delta \leq 100 \mu \text{m/m}$		1 · 10 ⁷ 2 · 10 ⁵
ϵ_W = ± 2.600 µm/m und Nullpunktänderung ϵ_m Δ $ \leq$ 100 µm/m ϵ_W = ± 3.100 µm/m und Nullpunktänderung ϵ_m Δ $ \leq$ 100 µm/m		2 · 10 ³ 1 · 10 ⁴
Kleinster Krümmungsradius längs und quer bei Referenztemperatur		
LM1, TM1, XM4, RM8	mm	5 10
TM9, RM9 Verwendbare Befestigungsmittel	mm	IU

⁽¹⁾ Die Daten sind abhängig von den verschiedenen Parametern der Installation und deshalb nur für represenative Beispiele angegeben (2) Bei TM9 und RM9 beträgt die Abweichung ± 0,5 %. (3) 300°C nur kurzeitig; < 5 h unter Luft

mit einem Messgitter

LM11


Linear-DMS

Temperaturgang angepasst an Stahl mit $\alpha = 10.8 \cdot 10^{-6} / K$

LM1x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Inhalt je Packung 10 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Abmessungen (mm)			Maximale Speise- spannung (*)	Löt- stütz- punkte	
				Messgitter Messgitter- träger					
Stahl	Aluminium	Sonstige ⁽¹⁾	Ω	а	b	С	d	V	
1-LM11-1.5/350GE		1-LM1x-1.5/350GE	350	1,5	2,5	9	4,4	6	
1-LM11-3/350GE		1-LM1x-3/350GE	350	3	3,4	11,8	5,4	10	
1-LM11-6/350GE		1-LM1x-6/350GE	350	6	3,4	14,8	5,4	14	
1-LM11-1.5/1K0GE		1-LM1x-1.5/1K0GE	1000	1,5	2,5	9	4,4	11	
1-LM11-3/1K0GE		1-LM1x-3/1K0GE	1000	3	3,4	11,8	5,4	17	
1-LM11-6/1K0GE		1-LM1x-6/1K0GE	1000	6	3,4	14,8	5,4	14	

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

(1) nicht für Kunststoff angepasst lieferbar

mit zwei Messgittern

TM11

T-Rosette

Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10 $^{\text{-}6}/K$

TM1x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Inhalt je Packung 5 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Ab	Abmessungen (mm)			Maximale Speise- spannung (*)	Löt- stütz- punkte
				Messgitter Messgitter- träger					
Stahl	Aluminium	Sonstige ⁽¹⁾	Ω	а	b	С	d	V	
1-TM11-1.5/350GE		1-TM1x-1.5/350GE	350	1,5	2,6	9,5	8	6	
1-TM11-3/350GE		1-TM1x-3/350GE	350	3	3,4	11,7	10,6	10	
1-TM11-6/350GE		1-TM1x-6/350GE	350	6	6,3	15	16,6	19,5	
1-TM11-1.5/1K0GE		1-TM1x-1.5/1K0GE	1000	1,5	2,5	9,5	8	11	
1-TM11-3/1K0GE		1-TM1x-3/1K0GE	1000	3	3,4	11,7	10,6	17	
1-TM11-6/1K0GE		1-TM1x-6/1K0GE	1000	6	6,3	15	16,6	33	

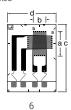
^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

TM91

Gestapelte T-Rosette

Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10⁻⁶/K

TM9x


Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

1,5

Inhalt je Packung 5 Stück

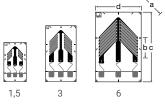
Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Abmessungen (mm)			Maximale Speise- spannung (*)	Löt- stütz- punkte	
				Messgitter Messgitter- träger					
Stahl	Aluminium	Sonstige ⁽¹⁾	Ω	а	b	С	d	V	
1-TM91-1.5/350GE		1-TM9x-1.5/350GE	350	1,5	2,5	11,3	7,9	4,5	
1-TM91-3/350GE		1-TM9x-3/350GE	350	3	3,7	15	11,7	7	
1-TM91-6/350GE		1-TM9x-6/350GE	350	6	3,7	18	13	10	
1-TM91-1.5/1K0GE		1-TM9x-1.5/1K0GE	1000	1,5	2,5	11,3	7,9	7	
1-TM91-3/1K0GE		1-TM9x-3/1K0GE	1000	3	3,7	15	11,7	13	
1-TM91-6/1K0GE		1-TM9x-6/1K0GE	1000	6	3,7	18	13	18	

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

⁽¹⁾ nicht für Kunststoff angepasst lieferbar

⁽¹⁾ nicht für Kunststoff angepasst lieferbar

mit zwei Messgittern


XM41

V-förmiger DMS Temperaturgang angepasst an Stahl mit $\alpha = 10.8 \cdot 10^{-6} / K$

XM4x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Inhalt je Packung 5 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Abmessungen (mm)			Maximale Speise- spannung (*)	Löt- stütz- punkte	
				Messgitter Messgitter- träger					
Stahl	Aluminium	Sonstige ⁽¹⁾	Ω	a b c d		V			
1-XM41-1.5/350GE		1-XM4x-1.5/350GE	350	1,5	1,5	10,6	6	5	
1-XM41-3/350GE		1-XM4x-3/350GE	350	3	3	15	8,2	10	
1-XM41-6/350GE		1-XM4x-6/350GE	350	6	4	18,6	12,2	16	
1-XM41-1.5/1K0GE		1-XIV/4x-1.5/1K0GE	1000	1,5	1,5	10,6	6	8	
1-XM41-3/1K0GE		1-XM4x-3/1K0GE	1000	3	2,9	15	8,2	16	
1-XM41-6/1K0GE		1-XM4x-6/1K0GE	1000	6	4	18,6	12,2	26	

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt. (1) nicht für Kunststoff angepasst lieferbar

mit drei Messgittern

RM81

Kantenrosette

Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10 $^{\text{-}6}/K$

RM8x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

1,5

6

Inhalt je Packung 5 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Abmessungen (mm)			Maximale Speise- spannung (*)	Löt- stütz- punkte	
				Messgitter Messgitter- träger					
Stahl	Aluminium	Sonstige ⁽¹⁾	Ω	a b		С	d	V	
1-RM81-1.5/350GE		1-RM8x-1.5/350GE	350	1,5	2,5	11	13,3	6	
1-RM81-3/350GE		1-RM8x-3/350GE	350	3	3,4	14,6	18,4	10	
1-RM81-6/350GE		1-RM8x-6/350GE	350	6	3,4	17,1	22,5	14	
1-RM81-1.5/1K0GE		1-RM8x-1.5/350GE	1000	1,5	2,5	11	13,3	11	
1-RM81-3/1K0GE		1-RM8x-3/350GE	1000	3	3,4	14,6	18,4	17	
1-RM81-6/1K0GE		1-RM8x-6/350GE	1000	6 3,4 17,1		17,1	22,5	24	

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

RM91

Gestapelte Rosette

Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10⁻⁶/K

RM9x

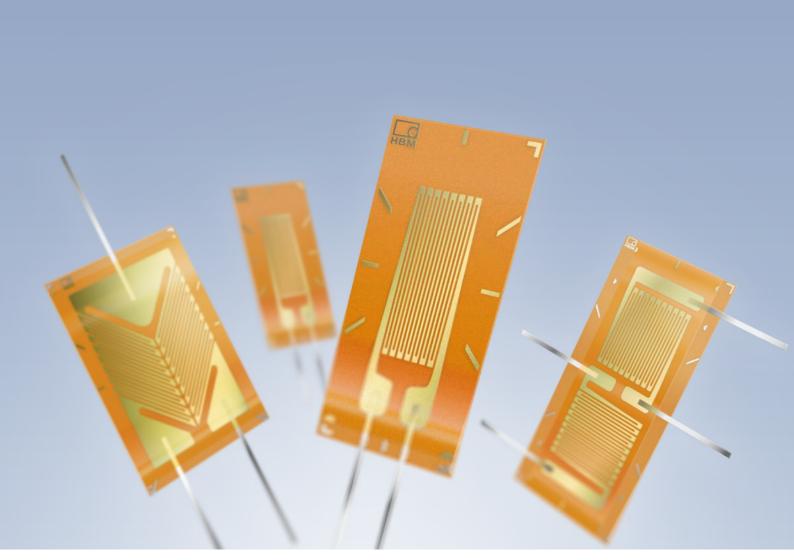
Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Inhalt je Packung 5 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Abmessungen (mm)			Maximale Speise- spannung (*)	Löt- stütz- punkte	
				Mess	gitter	Mess trä			
Stahl	Aluminium	Sonstige ⁽¹⁾	Ω	а	b	С	d	V	
1-RM91-1.5/350GE		1-RM9x-1.5/350GE	350	1,5	2,5	11,3	11,1	6	
1-RM91-3/350GE		1-RM9x-3/350GE	350	3	3,7	15	16	11	
1-RM91-6/350GE		1-RM9x-6/350GE	350	6	3,7	18	16	9	
1-RM91-1.5/1K0GE		1-RM9x-1.5/350GE	1000	1,5	2,6	11,3	11,1	6	
1-RM91-3/1K0GE		1-RM9x-3/350GE	1000	3	3,7	15	16	11	
1-RM91-6/1K0GE		1-RM9x-6/350GE	1000	6	3,7	18	16	15	

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.



⁽¹⁾ nicht für Kunststoff angepasst lieferbar

⁽¹⁾ nicht für Kunststoff angepasst lieferbar

DMS der Serie G

- DMS für spezielle Anwendungen und den Bau von Messgrößenaufnehmern
- Nennwiderstand 120 Ω und 350 Ω verfügbar
- Anschlussbändchen serienmäßig

DMS-Konstruktion		Folien-DMS mit eingebettetem Messgitter
Messgitter Werkstoff		Konstantanfolie
Dicke	μm	3,8 oder 5, je nach DMS-Typ
Träger Werkstoff	μm	Phenolharz, glasfaserverstärkt
Dicke	μπ	35 ± 10
Abdeckung Werkstoff		Dhanalbarz glaofocoryaratärkt
Gesamtdicke DMS	μm	Phenolharz, glasfaserverstärkt 65 ± 15
Anschlüsse	·	nickelplattierte Cu-Bänder, 0,2 bzw. 0,3 x 0,06 x 30
Nennwiderstand	Ω	120 oder 350, je nach DMS-Typ
Widerstandstoleranz ⁽¹⁾	%	±0,35
k-Faktor		ca. 2
Nennwert des k-Faktors k-Faktor-Toleranz bei 0,6 mm und 1,5 mm Messgitterlänge	%	auf jeder Packung angegeben ±1,5
bei ≥ 3 mm Messgitterlänge	%	± 1,3 ± 0,7
Temperaturkoeffizient des k-Faktors	1/K	ca. (115 ±10) · 10 ⁻⁶
Nennwert des Temperaturkoeffizienten des k-Faktors		auf jeder Packung angegeben
Referenztemperatur Cebraughetemperatur	°C	23
Gebrauchstemperaturbereich für statische, d. h. nullpunktbezogene Messungen	°C	-70+200
für dynamische, d. h. nicht nullpunktbezogene Messungen	°C	-200+200
Querempfindlichkeit		auf jeder Packung angegeben
bei Referenztemperatur unter Verwendung von Klebstoff Z 70 am DMS-Typ LG11-6/120	%	-0,1
Temperaturgang		auf jeder Packung angegeben
Temperaturgang nach Wahl angepasst an Wärmeausdehnungskoeffizienten		aar joud. I dendrig arrigegezer.
lpha für ferritischen Stahl	1/K	10,8· 10 ⁻⁶
α für Aluminium	1/K	23 · 10-6
α für austenitischen Stahl	1/K	16· 10· ⁶
andere Anpassungen auf Anfrage Toleranz des Temperaturgangs	1/K	±0.3·10 ⁻⁶
Temperaturbereich der Anpassung des Temperaturgangs	°C	-10+120
Mechanische Hysterese ⁽²⁾ bei Referenztemperatur und Dehnung ε=±1.000 μm/m am DMS-Typ LG11-6/120		
bei 1. Belastungszyklus und Klebstoff EP 250	μm/m	0,5
bei 3. Belastungszyklus und Klebstoff EP 250	μm/m	0,5
bei 1. Belastungszyklus und Klebstoff X 60	μm/m	3
bei 3. Belastungszyklus und Klebstoff X 60 am DMS-Typ LG11-3/350	μm/m	1,5
bei 1. Belastungszyklus und Klebstoff Z 70	μm/m	1,6
bei 3. Belastungszyklus und Klebstoff Z 70	μm/m	0,8
Maximale Dehnbarkeit ⁽²⁾ bei Referenztemperatur unter Verwendung von Klebstoff Z 70 am DMS-Typ LG11-6/120		
Dehnungsbetrag ϵ bei positiver Richtung	μm/m	20.000 (\(\triangle 2 \) \(\triangle 3 \)
Dehnungsbetrag ϵ bei negativer Richtung	μm/m	50.000 (≙ 5 %)
Dauerschwingverhalten ⁽²⁾ bei Referenztemperatur unter Verwendung von Klebstoff Z 70 am DMS-Typ LG11-6/120		
Erreichbare Lastspielzahl L_W bei Wechseldehnung $\epsilon_W = \pm 1.000 \mu m/m$ und		
Nullpunktänderung ε _m Δ≦ 300 μm/m		>> 10 ⁷
$\epsilon_{\text{m}}^{\cdots}$ Δ \leqq 30 μm/m am DMS-Typ LG11-6/350		3 · 106
		>> 10 ⁷ 3 · 10 ⁶
$\epsilon_{m}\Delta\!\leqq\!300~\mu\text{m/m}$ $\epsilon_{m}\Delta\!\leqq\!30~\mu\text{m/m}$		3.10
$ε_{m}$ $\Delta \le 300$ μm/m $ε_{m}$ $\Delta \le 30$ μm/m	mm	
ε _m Δ≦ 300 μm/m	mm	3 Z 70; X 60; X 280

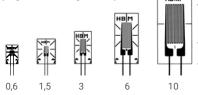
⁽¹⁾ Bei Messgitterlängen von 0,6 mm kann der Nennwiderstand um ±1% abweichen (2) Die Daten sind abhängig von den verschiedenen Parametern der Installation und deshalb nur für repräsentative Beispiele angegeben.

Serie G

LG11

Linear-DMS

Temperaturgang angepasst an Stahl mit a = 10,8 \cdot 10⁻⁶/K


LG13

Temperaturgang angepasst an Aluminium mit a = $23 \cdot 10^{-6}$ /K

LG1x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Inhalt je Packung 10 Stück

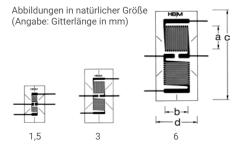
mit einem Messgitter, mit zwei Messgittern

Ab Lager lief	Ab Lager lieferbare Typen		Nenn- wider- stand	Ab	messur	igen (m	Maximale Speise- spannung (*)	Löt- stütz- punkte	
				Messgitter Messgitter- träger					
Stahl	Aluminium	Sonstige	Ω	а	a b c d		V		
		1-LG1x-0.6/120 ^(#)	120	0,6	1	5	3,2	1,5	LS 7
		1-LG1x-1.5/120	120	1,5	1,2	6,5	4,7	2,5	LS 7
1-LG11-3/120		1-LG1x-3/120	120	3	1,6	8,5	4,5	4	LS 7
1-LG11-6/120		1-LG1x-6/120	120	6	2,8	13	6	8	LS 5
1-LG11-10/120		1-LG1x-10/120	120	10	4,6	18,5	9,5	13	LS 5
1-LG11-3/350		1-LG1x-3/350	350	3	1,6	8,5	4,5	7	LS 7
1-LG11-6/350	1-LG13-6/350	1-LG1x-6/350	350	6	2,8	13	6	13	LS 5
1-LG11-10/350		1-LG1x-10/350	350	10	5	18,5	9,5	23	LS 5

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

XG11

T-Rosette


Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10 $^{\text{-}6}/\text{K}$

XG13

Temperaturgang angepasst an Aluminium mit α = 23 \cdot 10-6/K

XG1x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Inhalt je Packung 5 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Abmessungen (mm)			Maximale Speise- spannung (*)	Löt- stütz- punkte	
				Mess	gitter	Mess trä			
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	V	
		1-XG1x-1,5/120	120	1,5	1,5	9	5	3	LS 5
1-XG11-3/120		1-XG1x-3/120	120	3	3,2	14,5	7,5	6	LS 4
1-XG11-6/120		1-XG1x-6/120	120	6	6,5	23,5	11	12	LS 5
1-XG11-3/350	1-XG13-3/350	1-XG1x-3/350	350	3	3,1	14,4	7,3	10	LS 4
1-XG11-6/350		1-XG1x-6/350	350	6 6,3 23,3 10,5			20	LS 5	

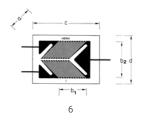
^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

^(#) nur in den Temperaturganganpassungen ferritischer Stahl, austenitischer Stahl und Aluminium erhältlich

Serie G

mit zwei Messgittern

XG21


 $\begin{tabular}{ll} Scher-/Tosions-Halbbrücke \\ Temperaturgang angepasst an Stahl \\ mit $\alpha = 10.8 \cdot 10^{-6}$/K \end{tabular}$

XG2x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Inhalt je Packung 5 Stück

Ab Lager lief	Ab Lager lieferbare Typen		Nenn- wider- stand	Abmessungen (mm)					Maximale Speise- spannung (*)	Löt- stütz- punkte
				Messgitter Messgitter- träger						
Stahl	Aluminium	Sonstige	Ω	а	b1	b2	С	d	V	
		1-XG2x-1.5/120	120	1,5	1,7	2,5	6,8	4,5	2,5	LS7
		1-XG2x-3/120	120	3	3,7	5,3	11,2	9,5	6	LS5
		1-XG2x-6/120	120	6	7,9	10	17,5	12,7	11	LS4
1-XG21-3/350		1-XG2x-3/350	350	3	4,5	5,3	11,2	9,5	10	LS4
1-XG21-6/350		1-XG2x-6/350	350	6	7,9	10	17,5	12,7	19	LS5

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

Spezial-DMS

- Gekapselte DMS nach Schutzart IP67 für anspruchsvolle Anwendungen
- Anschweißbarer DMS für alternatives Befestigungsverfahren
- DMS für sehr hohe Dehnung
- DMS für Messungen in Bolzen
- Miniatur-Rosette zur Anwendung auf Leiterplatten
- DMS zur Integration in Faserverbundwerkstoffe
- Messstreifen für die transiente Druckmessung
- Messstreifen zur Ermittlung der Rissfortpflanzung
- Temperatursensor zur Installation wie DMS
- DMS zur Eigenspannungsermittlung

Gekapselter DMS mit Litze

- nach Schutzart IP 67⁽¹⁾
- mit 1m fluorpolymerisolierter Anschlusslitze
- Feuchtedicht und chemikalienbeständig⁽²⁾ da allseitig in Spezialkunststoff gekapselt
- Exzellente Nullsignalstabilität bei wechselnder Feuchte
- Wahlweise Zweileiter- oder Vierleiteranschluss

LE11

gekapselter Linear-DMS, Temperaturgang angepasst an Stahl α = 10,8 \cdot 10⁻⁶ /K

Abbildung in natürlicher Größe

Inhalt je Packung 5 Stück

Ab Lager lieferbare Typen	Nenn- wider- stand		Abmessung		Maximale Speise- spannung (*)	
		Mess	gitter		gitter- ger	
Stahl	Ω	а	b	С	d	V
1-LE11-3/350ZE (2-Leiter-Anschluss)	350	3	2	15	9	6
1-LE11-3/350VE (4-Leiter-Anschluss)	350	3	2	15	9	6

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

Тур		LE11-3/350
DMS-Konstruktion		Folien-DMS, IP 67, chemikalienbeständig ⁽²⁾
Messgitterwerkstoff		Konstantanfolie
Messgitterlänge	mm	3
Träger		
Werkstoff		Spezialkunststoff
Dicke Abdeckwerkstoff	μm	30±5
Abdeckwerkston Gesamtdicke DMS	1100	Spezialkunststoff, 25 μm dick 50±15
Anschlusskabel, 1 m lang	μm	2 oder 4 fluorpolymerisolierte Litzen
Alischiusskabei, i ili lang		2 oder 4 fluorpolymensolierte Litzen
Nennwiderstand	Ω	350
Widerstandstoleranz pro Packung	%	±0,5
k-Faktor		ca. 2
Nennwert des k-Faktors		auf jeder Packung angegeben
k-Faktor-Toleranz	%	±1
Referenztemperatur	°C	+23
Gebrauchstemperaturbereich		
bei Installation mit Z 70 bei Installation mit EP 150/EP 310N/X 280	°C	-70+120 -200+180
Del Installation mit EP 150/EP 310N/X 280 Temperaturgang angepasst an		-200+180
Wärmeausdehnungskoeffizienten α für ferritischen Stahl	1/K	10.8 · 10 ⁻⁶
Temperaturbereich der Anpassung des Temperaturgangs	°C	-10+120
Querempfindlichkeit bei Referenztemperatur	04	0.05
unter Verwendung von Klebstoff Z 70	%	0,25
Kleinster Krümmungsradius bei Referenztemperatur, längs und guer	mm	3
Maximale Dehnbarkeit bei Referenztemperatur	μm/m	±50.000 (≙±5%)
Dauerschwingverhalten bei Referenztemperatur	part 1, 111	
unter Verwendung von Klebstoff Z 70		
Erreichbare Lastspielzahl L _W bei Wechseldehnung		107 (D:::f.::=d - b -: 107 - b -: -b -: - b -:)
ϵ_W =±1.000 μm/m und Nullpunktänderung ϵ_m $\Delta \stackrel{<}{\leq}$ 300 μm/m ϵ_m $\Delta \stackrel{<}{\leq}$ 30 μm/m		>> 10 ⁷ (Prüfung wurde bei 10 ⁷ abgebrochen) > 10 ⁷ (Prüfung wurde bei 10 ⁷ abgebrochen)

⁽¹⁾ Die Beständigkeit der verwendeten Klebstoffe muss beachtet werden.

⁽²⁾ Nur stark konzentrierte Säuren (Schwefel-, Salpetersäure) zerstören diesen Spezialkunststoff. Hohe Beständigkeit gegenüber Kraftstoffen und Motorölen.

Anschweißbarer DMS

Einsatzbereich: Dehnungsmessungen unter erhöhten Temperaturen an schweißbaren Bauteilen, an denen wegen ihrer Größe die DMS-Installation mit heiß härtendem Klebstoff nicht möglich ist. DMS-Einsatz vor Ort, wo die zum Kleben erforderliche Sauberkeit nicht garantiert werden kann (auf Baustellen, in Fabrikhallen etc.).

Befestigung: Punktschweißen ist ein einfaches Befestigungsverfahren für DMS, da kaum Vorbereitungen notwendig sind und wenig Übung beim Anwender vorausgesetzt wird.

Ausführungsform: Folien-DMS der Serie Y auf Trägerblech, abgedeckt mit transparentem Silikongummi; mit 0,5m Anschlusslitzen versehen

LS31 HT

Inhalt je Packung 5 Stück (1)

Wir empfehlen das mobile Impulsschweißgerät C33 der Walter Heller GmbH.

Weitere Informationen sind zu finden unter: www.heller-schweisstechnik.de

Technis	acha D	loton —	1 021	ШΤ
	SCHE D	alen —	LOOI	

Тур		1-LS31HT-6/350
DMS-Konstruktion		Folien-DMS (Viertelbrücke) mit Phenolharz glasfaserverstärl und Konstantan-Messgitter heiß installiert auf Trägerblech
Messgitterlänge	mm	6
Trägerblech		
l x b	mm	40 x 10
Dicke	mm	0,1
Werkstoff		X 8 Cr 17 (1.4016)
Gesamtdicke DMS	mm	1,1
Messgitterfolie		CrNi
Abdeckung		Silikon, rot
Maximal zulässige Speisespannung	V	12
Anschluss		4 x 0,5 m Fluorpolymer-Litze Anschlusskabel
Nennwiderstand	Ω	350
Widerstandstoleranz pro Packung	%	±1; am Kabelende gemessen
k-Faktor		ca. 2
Nennwert des k-Faktors		auf jeder Packung angegeben
Temperaturkoeffizient des k-Faktors		auf jeder Packung angegeben
Querempfindlichkeit		auf jeder Packung angegeben
Referenztemperatur	°C	+23
Gebrauchstemperaturbereich	°C	-50+250 (Kurzzeit: 300°C)
Temperaturgang angepaßt an Wärmeausdehnungs-		, , ,
koeffizienten α für ferritischen Stahl	1/K	10,8 · 10 ⁻⁶
Anpassung des Temperaturgangs im Bereich	°C	-50 + 250
Kleinster Krümmungsradius bei Referenztemperatur,		
längs und quer	mm	75
Maximale Dehnbarkeit bei Referenztemperatur	μm/m	± 3.000 (△ ± 0,3 %)
Dehnungsbezogene Rückstellkraft	N	< 250
	1.000 µm/m	. 200
Dauerschwingverhalten Bei Referenztemeratur (Punktschweißung) Wechseldehnung ϵ_{W} =±500 µm/m Nullpunktänderung ϵ_{m} Δ \leq 300 µm/m ϵ_{m} Δ \leq 30 µm/m		>> 10 ⁷ (Prüfung wurde bei 10 ⁷ abgebrochen)
Befestigungsart		Punktschweißverfahren

⁽¹⁾ Jeder Packung sind zwei Bleche für Schweißversuche beigelegt

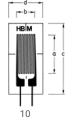
DMS für hohe Dehnung

Einsatzbereich: überall da, wo Dehnungen bzw. Stauchungen > 5% auftreten.

Technische Daten: maximale Dehnbarkeit ±100.000 μm/m (=±10%).

Dauerschwingverhalten: geringere Wechsellastbeständigkeit als bei DMS der Serie Y.

Übrige Daten: siehe Seite 19


LD20

Linear-DMS für hohe Dehnungen Temperaturgang nicht angepasst

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Inhalt je Packung 10 Stück

Ab Lager lieferbare Typen	Varianten	wider- Speise-		Abmessun		Maximale Speise- spannung (*)	Löt- stütz- punkte	
			Mess	gitter	Mess trä	gitter- ger		
	Sonstige	Ω	а	b	С	d	V	
1-LD20-6/120		120	6	2,8	13	6	8	LS 7
	1-LD20-10/120	120	10	4,6	18,5	9,5	13	LS 5
1-LD20-6/350		350	6	2,8	13	6	13	LS 7
	1-LD20-10/350	350	10	5	18,5	9,5	23	LS 5

(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

DMS für Messungen in Bolzen

Einsatzbereich: Messung von Axialkräften, Vibrationen und Dehnungen in Bolzen, Schrauben sowie ähnlichen Konstruktionselementen

Eigenschaften: Zylinderförmig vorgeformter Dehnungsmessstreifen zur Anwendung in Bolzen, Schrauben und ähnlichen Konstruktionsteilen.

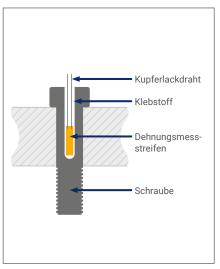
Technische Daten: Am zylinderförmigen Dehnungsmessstreifen sind bereits 60 mm Kupferlackdraht angelötet.

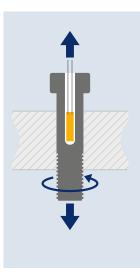
Der Dehnungsmesstreifen hat eine Zylinderhöhe von 11,5 mm und ist für einen Nominaldurchmesser von 2 mm vorgesehen.

LB11 Linear DMS

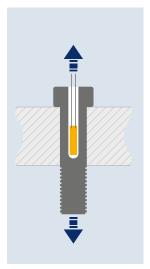
Temperaturgang angepasst an Stahl α = 10,8 \cdot 10⁻⁶ /K

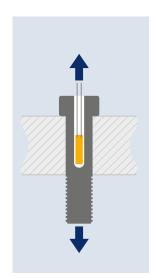
Abbildung in natürlicher Größe


Inhalt je Packung 5 Stück


Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand			Maximale Speise- spannung		
				Mess	gitter	Mess träg	gitter- er ^(*)	
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	V
1-LB11-3/120ZW			120	3	5	11,5	6	7
1-LD11-3/120ZW			120	3	3	11,3	0	

^(*) vorgeformt mit Außendurchmesser 1,9 ±0,15 mm

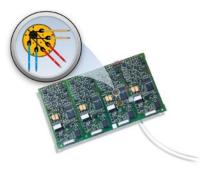

Anwendungen


Querschnittdarstellung

Axialkräfte

Dynamische Lasten

Dehnung



Гур		LB11-3/120ZW
DMS-Konstruktion		Folien-DMS mit eingebettetem Messgitter
Messgitter Werkstoff Dicke	μm	Konstantan 5
Fräger Werkstoff Dicke Anschlüsse	μm	Special plastic material 35 ± 10 Kupferlackdraht rot, 60 mm
Nominaldurchmesser	mm	1,9±0,1
Nennwiderstand Widerstandstoleranz	Ω %	120 ±0,3
k-Faktor Nennwert des k-Faktors k-Faktor-Toleranz Femperaturkoeffizient des k-Faktors	%	ca. 2 auf jeder Packung angegeben ±1 auf jeder Packung angegeben
Referenztemperatur	°C	23
Gebrauchstemperaturbereich für statische, d. h. nullpunktbezogene Messungen für dynamische, d. h. nicht nullpunktbezogene Messungen	°C	-70 +140 -200 +140
Querempfindlichkeit		auf jeder Packung angegeben
bei Referenztemperatur unter Verwendung von Klebstoff Z70 am DMS Typ 1-LB11-3/120ZW (nicht vorgeformt)	%	1,6
emperaturgang		auf jeder Packung angegeben
Γemperaturgang angepasst an Wärmeausdehnungskoeffizienten α für ferritischen Stahl	1/K	10,8 · 10 ⁻⁶
Foleranz des Temperaturgangs	1/K	±0,3 · 10 ⁻⁶
Anpassung des Temperaturgangs im Bereich	°C	-10 +120
Maximale Dehnbarkeit ⁽¹⁾ bei Referenztemperatur unter Verwendung von Klebstoff Z70 am DMS Typ 1-LB11-3/120ZW (nicht vorgeformt)		
Dehnungsbetrag ε bei positiver Richtung Dehnungsbetrag ε bei negativer Richtung	μm/m μm/m	50.000 (5%) 50.000 (5%)

 $^{^{(1)}}$ Die Daten sind am ebenen DMS (nicht vorgeformt) ermittelt worden

DMS für Messungen auf Leiterplatten

RF91

 $0^{\circ}/45^{\circ}/90^{\circ}$ -Miniaturrosette Temperaturgang angepasst an Stahl α = $10.8 \cdot 10^{-6}$ /K

RF9x

Temperaturgang angepasst nach Kundenwunsch siehe Seite 16

Abbildung in natürlicher Größe

1-RF91-0.8_ZE

Inhalt je Packung 5 Stück **Einsatzbereich:** Dehnungsmessung und experimentelle Spannungsanalyse auf Leiterplatten und anderen sehr kleinen Bauteilen

Eigenschaften: Kleine DMS-Rosette mit Kupferlackdraht ("ZE") und gestapelten Messgittern mit Durchmesser von 5 mm; lieferbar als Variante mit abgedecktem Messgitter ("ZE") und nicht abgedecktem Messgitter mit sehr kleinen intergierten Lötflächen ("_W")

Ab Lager lief	erbare Typen	Varianten Nen wide star		Abmessun		ngen (mm)	Maximale Speise- spannung (*)	Löt- stütz- punkte
				Mess	gitter	Messgitter- träger		
Stahl	Aluminium	Sonstige	Ω	а	b	С	V	
1-RF91-0.8/120ZE		1-RF9x-0.8/120ZE ^(#)	120	0,8	0,9	5	1	_
1-RF91-0.8/120_W		1-RF9x-0.8/120_W ^(#)	120	0,8	0,9	5	1	_

^(*) Maximale Speisespannung für ferritischen Stahl. Für andere Temperaturganganpassungen ist auf dem mitgelieferten Datenblatt der entsprechende Wert aufgedruckt.

Vor Ort für Sie im Einsatz: HBM Ingenieure kommen zu Ihnen

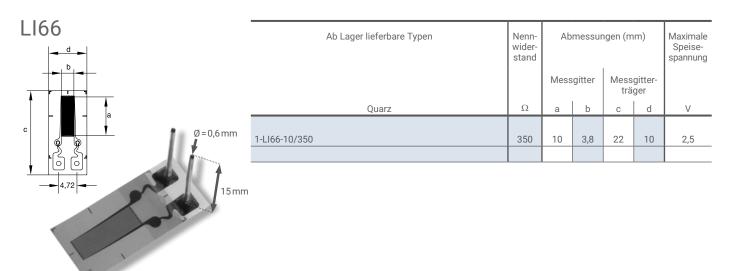
HBM unterstützt Hersteller von Leiterplatten bereits seit vielen Jahren mit der Durchführung von Dehnungsmessungen an Leiterplatten mit Hilfe von Dehnungsmessstreifen.

Sie profitieren von einer lückenlosen Dokumentation, sicheren Messdaten und mehr Sicherheit im mobilen Einsatz der Leiterplatten.

Vorteile

- Einhaltung von Richtlinien und Kundenvorgaben
- Gängige internationale Richtlinien (z.B. IPC JEDEC 9804), Industrienormen
- Sichere belastbare Ergebnisse mit aussagekräftigen und unabhängigen Test-Reports
- Vermeidung von Messfehlern durch den Einsatz unserer erfahrenen Service-Ingenieure
- Schnell und effizient zum Messergebnis ohne Investition in Bestandsgeräte
- So global wie Ihr Unternehmen: Wir führen weltweit Messungen durch

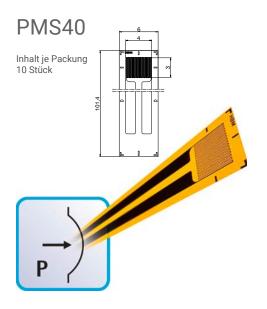
Sprechen Sie mit ihrem persönlichen HBM Vertriebspartner!


^(#) Typen sind nur für Aluminium, ferritischen oder austenistischen Stahl angepasst lieferbar

Тур		Typ 1-RF91-0.8/120ZE/1-RF91.00/120_W
DMS-Konstruktion		Folien-DMS mit eingebettetem Messgitter (ZE) bzw nicht abgedecktem Messgitter (_W)
Messgitter Werkstoff Dicke	μm	Konstantan 3,8
Träger Werkstoff Dicke	μm	PEEKF 18 ±3
Abdeckung; nur bei Option _W Werkstoff Gesamtdicke DMS Anschlüsse Option _W	μm	Polyimid-Folie 95 ±15 Kupferlackdraht, 500 mm, Ø 0,2 mm (2x blau [Messgitter a], 2x rot [Messgitter b], 2x goldfarben [Messgitter c]) integrierte Lötflächen, ca. 0,8 mm lang, ca. 0,6 mm
Nennwiderstand Widerstandstoleranz k-Faktor	Ω %	120 ±1 ca. 2
Nennwert des k-Faktors k-Faktor-Toleranz Temperaturkoeffizient des k-Faktors	%	auf jeder Packung angegeben ±1,5 auf jeder Packung angegeben
Referenztemperatur	°C	23
Gebrauchstemperaturbereich für statische, d. h. nullpunktbezogene Messungen für dynamische, d. h. nicht nullpunktbezogene Messungen	°C	-40 +140 -75 +140
Querempfindlichkeit		auf jeder Packung angegeben
Temperaturgang Temperaturgang angepasst an Wärmeausdehnungskoeffizienten α für ferritischen Stahl α für Aluminium α für austenitischen Stahl Toleranz des Temperaturgangs Anpassung des Temperaturgangs im Bereich	1/K 1/K 1/K 1/K °C	auf jeder Packung angegeben 10,8 · 10·6 23 · 10·6 16 · 10·6 ±0,3 · 10·6 -10 +120
Maximale Dehnbarkeit ⁽¹⁾ bei Referenztemperatur unter Verwendung von Klebstoff Z70 am DMS Typ 1-RF91-0.8/120ZE Dehnungsbetrag ϵ bei positiver Richtung Dehnungsbetrag ϵ bei negativer Richtung	μm/m μm/m	50.000 (5%) 50.000 (5%)
Dauerschwingverhalten ⁽¹⁾ bei Referenztemperatur unter Verwendung von Klebstoff Z70 am DMS Typ 1-RF91-0.8/120ZE Erreichbare Lastspielzahl L_W bei Wechseldehnung ϵ_W = $\pm 1.000~\mu m/m$ und Nullpunktänderung ϵ_M Δ^{\leq} 300 $\mu m/m$		> 104
Kleinster Krümmungsradius längs und quer bei Refernztemperatur Verwendbare Befestigungsmittel kalt härtende Klebstoffe heiß härtende Klebstoffe	mm	10 Z70, X280 EP150, EP310N

⁽¹⁾ Die Daten sind abhängig von den verschiedenen Parametern der Installation und deshalb nur für repräsentative Beispiele angegeben

DMS zur Integration in Faserverbundwerkstoffe



Aufbau		Folien-DMS mit abgedecktem Messgitter, Dehnungs-
Anschlüsse		einleitung erfolgt über die Trägerfolie montierte, zugentlastete Lötfläche, weiterverbunden senkrecht stehende 15mm hohe Anschlusspins mit j Durchmesser 0.6mm
Messgitter Werkstoff Dicke	Ω μm	Konstantan 5
Trägermaterial Werkstoff Dicke	μm	Polyimid 55 ± 5
Basisfolie Werkstoff Gesamtdicke DMS	μm	Polyimid 95 ±15
Nennwiderstand Widerstandstoleranz k-Faktor	Ω %	350 ±0,35 ca, 2, auf jeder Packung angegeben
k-Faktor-Toleranz Temperaturkoeffizient des k-Faktors, ca. Nennwert des Temperaturkoeffizienten des k-Faktors Querempfindlichkeit	% 1/K	±1 (115±10) · 10-6 auf jeder Packung angegeben auf jeder Packung angegeben
Referenztemperatur	°C	23
Gebrauchstemperaturbereich für statische Messungen (nullpunktsbezogen) für dynamische Messungen (nicht nullpunktsbezogen) Temperaturgang	°C °C	-40+180 -40+180 auf jeder Packung angegeben
$\begin{tabular}{ll} Temperaturgang angepasst an Wärmeausdehnungskoeffizienten \\ α für Quarzglas/Komposit \\ Toleranz des Temperaturganges \end{tabular}$	1/K 1/K	0,5 ·10·6 ±0,3·10·6
Anpasssung des Temperaturgangs im Bereich	°C	-10+120
Max. Dehnbarkeit Dehnungsbetrag in positiver Richtung Dehnungsbetrag in negativer Richtung Dauerschwingverhalten,	μm/m μm/m	±50.000 (△5%) ±50.000 (△5%)
beiderschwingverhalten, bei Referenztemperatur unter Verwendung einer multidirektionalen CFK-Probe Err. Lastwechselzahl L_W bei Wechseldehnung ε_W = ± 1.000 mm/m u. Nullpunktänderung $\varepsilon_{m}\Delta$ < 100 μ m/m Nullpunktänderung $\varepsilon_{m}\Delta$ < 300 μ m/m Kleinster Krümmungsradius (längs und guer)		5.000.000 10.000.000
bei Referenztemperatur im Bereich des Messgitters im Bereich der Lötfläche	mm mm	0,3 8
Verwendbare Befestigungsmittel		Matrixharz

⁽¹⁾ Alle Angaben nach OIML-Richtlinie IR62

Druckmessstreifen

Charakteristische Merkmale

- Transiente Druckmessung
- Kurze Anstiegszeit
- Verklebte und unverklebte Anwendung

Ab Lager lieferbare Typen	Nenn- wider- stand	Ab	messur	ngen (m	m)
		Mess	gitter		gitter- ger
	Ω	а	b	С	d
1-PMS40-3/120_E	120	3	4	101.4	6

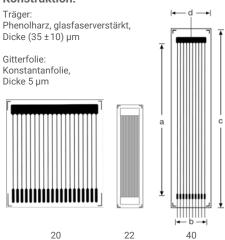
DMS-Konstruktion		Messstreifen mit eingebettetem Messgitter
Messgitter Werkstoff Dicke, ca.	μm	Manganin 10
Trägermaterial Werkstoff Dicke	μm	Polyimid 35 ± 5
Abdeckung Werkstoff Gesamtdicke Anschlüsse	μm	Polyimid 70 ±12 Lötflächen, Zweileiter Technik
Nennwiderstand Widerstandstoleranz	Ω %	120 ±2
PMS-Ausgangssignal (ΔR/R)		$a\cdot\Delta p+k\cdot\epsilon+k~\epsilon_S(T)$
Druckempfindlichkeit ⁽¹⁾ a (Δ R/R=a · Δ p)		2,50 · 10 ⁻⁶ /bar
Toleranz der Druckempfindlichkeit	%	±2
k-Faktor $^{(2)}$ (Δ R/R = k \cdot ϵ) k-Faktor-Toleranz	%	0,57 ±4
Temperaturgang ε_{S} (T)	μm/m	-619,4 +50,1 \cdot T = 1,1 \cdot T² +0,003 \cdot T³ \pm (T - 20) [T in °C]
Anstiegszeit τ		≧ 50 ns
Maximal zulässige effektive Brückenspeisespannung	V	3,5
Referenztemperatur	°C	20
Gebrauchstemperaturbereich	°C	-50+180

⁽¹⁾ Getestet unter hydrostatischen Bedingungen bis 200 bar. Weitere, unkalibrierte Tests wurden bei 2 kbar durchgefuhrt.
(2) Spezifiziert bis 1.000 µm/m Dehnung.
(3) Der k-Faktor muss fur verklebte Anwendungen berucksichtigt werden. Eine unverklebte Installation des PMS ist moglich.

Rissmessstreifen

Mit diesen Messstreifen kann die Rissfortpflanzung an einem Bauteil ermittelt werden. HBM bietet hierzu vier verschiedene Typen an: Die Typen RDS20 und RDS40 bestehen aus elektrisch getrennten Widerständen, d. h. hierbei werden bei Rissfortschritt einzelne Stromkreise unterbrochen.

Die Typen RDS22 und RDS17.8 besteht aus parallel geschalteten Leiterbahnen, die reißen, wenn sich der Riss unter dem Rissmessstreifen fortpflanzt. Hierdurch wird der elektrische Widerstand des Messstreifens mit dem Risswachstum stufenweise erhöht.


Diese Widerstandsänderung kann mit einem Widerstandsmessgerät oder auch mit einem DMS-Verstärker gemessen werden (siehe Anschlussschema).

RDS20, RDS22, RDS40

Rissmessstreifen

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Konstruktion:

Bestellbezeichnung der Standardtypen	Wider- stand je Steg	Abmessungen (mm) Steg- Mess- Messgitter- träger breite				Teilung Stegmitte/ Stegmitte (mm)	Anzahl der Stege	Max. zul. effektive Speise- spannung
	Ω	а	b	С	d	t		
1-RDS 20	13	20	22,5	28	25	1,15	20	-
1-RDS 22	44	22	5	27,8	6,8	0,1	50	_
1-RDS 40	28	40	8,4	47	10	0,85	10	_

Widerstandstoleranz ± 20 %

Bestellbezeichnung

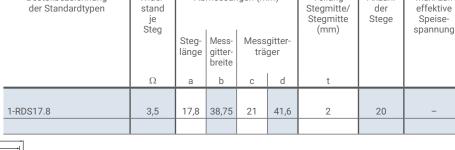
Inhalt je Packung 5 Stück

RDS17.8

Rissmessstreifen

Abbildungen in natürlicher Größe (Angabe: Gitterlänge in mm)

Konstruktion:

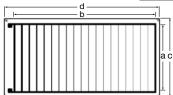

Träger:

Phenolharz, glasfaserverstärkt,

Dicke $(35 \pm 10) \mu m$

Gitterfolie: Konstantanfolie, Dicke 5 µm

Inhalt je Packung 5 Stück


Abmessungen (mm)

Teilung

Anzahl

Max. zul.

Wider-

Anschluss eines Rissmessstreifens

Es gibt zwei verschiedene Arten von Rissmessstreifen: RDS22 und RDS17.8 bestehen aus parallel geschalteten Leiterbahnen, die reißen, wenn sich der Riss unter dem Rissmessstreifen fortpflanzt. Hierdurch wird der elektrische Widerstand des Messstreifens stufenweise erhöht.

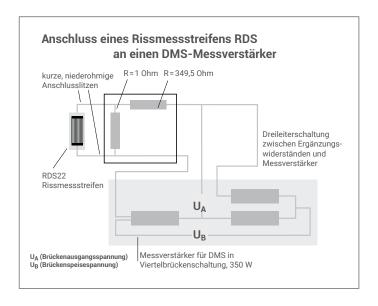
RDS20 und RDS40 bestehen aus elektrisch getrennten Leiterbahnen, d. h. hier werden bei Rissfortschritt einzelne Stromkreise unterbrochen. Werden diese einzeln kontaktiert, so kann auch die Richtung der Rissausbreitung detektiert werden.

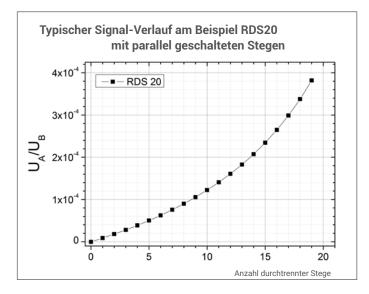
Der einfachste Weg, die Signale der Rissmessstreifen (RDS) zu detektieren ist eine Widerstandsmessung.

Viele HBM-Verstärker ermöglichen eine solche direkte Widerstandsmessung.

Der resultierende Widerstand (R) des RDS in Abhängigkeit der Anzahl der durchtrennten Stege lässt sich einfach berechnen. Es handelt sich hier um eine Parallelschaltung von n gleichen Widerständen (Ri):

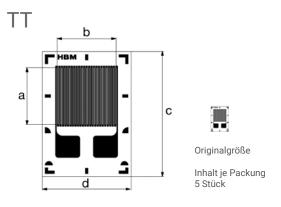
$$R_n = \frac{R_i}{n}$$

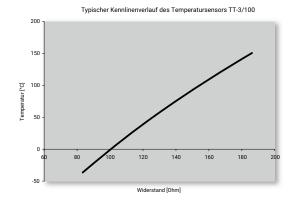

Wird eine Gitterlinie durchtrennt, so ergibt sich


$$R_{(n-1)} = \frac{R_i}{(n-1)}$$

Die Messung kann aber ebenso gut mit einem Messverstärker für DMS-Messungen durchgeführt werden.

Das skizzierte Schaltbild zeigt, wie der RDS ergänzt werden muss, damit die Widerstandsänderung im Messbereich eines Verstärkers für DMS-Viertelbrücken liegt.


Um Temperatureinflüsse zu minimieren, sollten als Ergänzungswiderstände temperaturstabile Festwiderstände oder DMS verwendet werden. Eine höhere Empfindlichkeit kann erreicht werden, indem der Parallelwiderstand größer gewählt wird.



Temperatursensor

Charakteristische Merkmale

- Kurze Ansprechzeit, durch guten thermischen Kontakt zum Bauteil und sehr geringer Wärmekapazität
- Einfach wie herkömmliche metallische DMS zu installieren
- Auch an gewölbten Flächen installierbar
- Jedes Widerstandsmessgerät zur Messwerterfassung geeignet

Ab Lager lieferbare Typen	Nenn- wider- stand (bei 0°C)	Ab	messur	ngen (m	m)
		Mess	gitter	Mess trä	gitter- ger
	Ω	а	b	С	d
1-TT-3/100	100	3	3,3	6,6	4,7

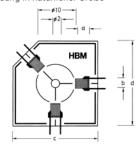
echnische Daten – TT-3/100 ⁽¹⁾		
DMS-Konstruktion		Nickeltemperatursensor (eingebettet)
Messgitter Werkstoff Dicke	μm	Nickel 5
Trägermaterial Werkstoff Dicke	μm	Polyimid 40 ±5
Abdeckung Werkstoff Dicke Anschlüsse	μm	Polyimid 25 ±12 integrierte Lötflächen
Nennwiderstand (bei 0°C) Widerstandstoleranz des Nennwiderstands	Ω %	100 ±1
Spezifikation des Nennwiderstands Spezifikation der Widerstandstoleranz	Ω %	auf der Packung angegeben ±0,3
Kennlinie des Sensors Fehler der Empfindlichkeit	%	auf der Packung angegeben 0,5 (bei Referenztemperatur)
Temperaturbereich	°C	-50+180
Kleinster Krümmungsradius (längs und quer) bei Referenztemperatur	mm	2, im Bereich der Lötflächen 5
Verwendbare Befestigungsmittel kalt härtende Klebstoffe heiß härtende Klebstoffe		Z70, X60, X280 EP150, EP310N

⁽¹⁾ Alle Angaben nach OIML-Richtlinie IR62

Zur Ermittlung von Eigenspannungen wird häufig das Bohrlochverfahren herangezogen. Bei dem Verfahren wird nach der Installation der DMS-Rosette auf dem Werkstück der Eigenspannungszustand durch eine geeignete Maßnahme gestört.

Die Eigenspannungen lösen nach dem Eingriff Dehnungen in der Werkstückoberfläche aus, die mittels des DMS erfasst und anschließend zur Berechnung des Eigenspannungszustandes herangezogen werden.

Bohrlochverfahren nach dem integralen Verfahren


Mit der RY21 oder mit der RY61 können Eigenspannungen nach der integralen Methode ermittelt werden.

Das Ergebnis ist der integrale Mittelwert der Eigenspannungen über die gesamte Bohrtiefe.

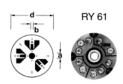
RY21

 $0^{\circ}/45^{\circ}/90^{\circ}$ -Bohrlochrosette Temperaturgang angepasst an Stahl mit α = $10.8 \cdot 10^{-6}/K$

Abbildung in natürlicher Größe

Inhalt je Packung 5 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Abmessungen (mm)		Maximale Speise- spannung	Löt- stütz- punkte		
Stahl	Aluminium	Sonstige	Ω	Mess	gitter		gitter- ger	V	
		- contrage							
1-RY21-3/120			120	3	2,5	22,1	22,1	4,5	LS 5


Abstand Bohrung (Mittelpunkt) zu Messgittermitte: 6,78mm

RY61

0°/45°/90°-Bohrlochrosette

zur Verwendung mit HBM-Bohrvorrichtung RY 61 Temperaturgang angepasst an Stahl mit α = 10,8 · 10⁻⁶/K Gebrauchstemperaturbereich: +10°... +60°C

Abbildung in natürlicher Größe

Inhalt je Packung 5 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Ab	messur	ngen (m	m)	Maximale Speise- spannung	Löt- stütz- punkte
				Mess		Mess trä	ı		
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	V	
1-RY61-1.5/120			120	1,5	0,8	_	12	2	LS 5

⁽¹⁾ Lötstützpunkte sind nicht zwingend erforderlich

Technische Daten:

Widerstandstoleranz ±1 % Kleinster Krümmungsradius 1.000 mm übrige Daten: siehe Seite 19

Da diese DMS durch eine Printplatte abgedeckt sind, können sie nur auf ebenen oder sehr schwach gekrümmten Flächen eingesetzt werden.

Abstand Bohrung (Mittelpunkt) zu Messgittermitte: 2,55mm

Bohrlochverfahren nach der "high-speed drilling"-Methode

Mit den DMS RY61K, RY61R, den beiden Varianten RY61S, VY61S und RY61M können Eigenspannung nach der "high-speed drilling"-Methode ermittelt werden. MTS3000 ist die notwendige Bohrvorrichtung für diese Methode.

Das Ergebnis sind die Eigenspannungen entsprechend aufgelöst über die eingestellte Bohrtiefe.

RY61K

0°/45°/90°-Kanten-Bohrlochrosette DMS mit integrierten Anschlussfläche Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10-6/K

Abbildung in natürlicher Größe

Inhalt je Packung 5 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand			Maximale Speise- spannung	Löt- stütz- punkte		
				Mess	gitter	Mess trä	gitter- ger		
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	V	
1-RY61-1.5/120K			120	1,5	0,8	7,2	10,2	2	LS 7

(1) Lötstützpunkte sind nicht zwingend erforderlich

Abstand Bohrung (Mittelpunkt) zu Messgittermitte: 2,55mm

RY61R

0°/45°/90°-Bohrlochrosette Temperaturgang angepasst an Stahl mit α = 10,8 · 10-6/K

Abbildungen in natürlicher Größe

Inhalt je Packung 5 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	ider-		m)	Maximale Speise- spannung	Löt- stütz- punkte	
Stahl	Aluminium	Sonstige	Ω	Mess	Messgitter Messgitter- träger			V	
1-RY61-1.5/120R			120	1,5	0,8	8	13,5	2	LS 7

(1) Lötstützpunkte sind nicht zwingend erforderlich

Abstand Bohrung (Mittelpunkt) zu Messgittermitte: 2,55mm

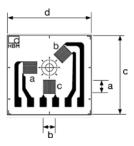
RY61S

0°/45°/90°-Bohrlochrosette Temperaturgang angepasst an Stahl mit α = 10,8 · 10-6/K

Abbildungen in natürlicher Größe

Inhalt je Packung 5 Stück

Ab Lager lieferbare Typen		Varianten	Nenn- wider- stand	Ab	messur	ngen (m	m)	Maximale Speise- spannung	Löt- stütz- punkte
				Mess	gitter	Mess trä			
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	V	
1-RY61-1.5/120S			120	1,5	0,8	-	10,2	2	LS 5


⁽¹⁾ Lötstützpunkte sind nicht zwingend erforderlich

Abstand Bohrung (Mittelpunkt) zu Messgittermitte: 2,55mm

RY61-3,2/120S

0°/45°/90°-Bohrlochrosette Temperaturgang angepasst an Stahl mit α = 10,8 · 10-6/K

Abbildungen in natürlicher Größe

Inhalt je Packung 5 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Ab	messur	ngen (m	m)	Maximale Speise- spannung	Löt- stütz- punkte
				Mess	gitter	Mess trä	gitter- ger		
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	V	
1-RY61-3.2/120S			120	3,2	3,2	20,9	22	10	LS 5

⁽¹⁾ Lötstützpunkte sind nicht zwingend erforderlich

Abstand Bohrung (Mittelpunkt) zu Messgittermitte: 5,07mm

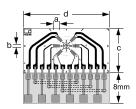
VY61S

0°/45°/90°/135°-Bohrlochrosette Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10-6/K Abbildung in natürlicher Größe

Inhalt je Packung 5 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Ab	messur	ngen (m	m)	Maximale Speise- spannung	Löt- stütz- punkte
				Mess	Messgitter Messg		ger		
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	V	
1-VY61-1.5/120S			120	1,5	0,8	_	10,2	2	LS 5

⁽¹⁾ Lötstützpunkte sind nicht zwingend erforderlich


Abstand Bohrung (Mittelpunkt) zu Messgittermitte: 2,55mm

RY61M

0°/45°/90°-Bohrlochrosette, symmetrisch Temperaturgang angepasst an Stahl mit α = 10,8 \cdot 10-6/K

Abbildung in natürlicher Größe

Inhalt je Packung 5 Stück

Ab Lager lief	erbare Typen	Varianten	Nenn- wider- stand	Ab	messur	ngen (m	m)	Maximale Speise- spannung	Löt- stütz- punkte
				Mess	Messgitter Messgitter- träger ⁽¹⁾				
Stahl	Aluminium	Sonstige	Ω	а	b	С	d	V	
1-RY61-1.5/120M			120	1,5	0,77	11,7	22,5	2,5	-
1-RY61-1.5/350M			350	1,5	0,77	11,7	22,5	4,5	_

 $^{^{(1)}}$ Maße des DMS ohne Leiterplatte

Bei der Eigenspannungsanalyse nach dem Bohrlochverfahren können schon geringe Exzentrizitäten relativ große Messfehler verursachen.

Die symetrische Bohrlochrosette RY61M mit 6 Messgittern hat den Vorteil, dass durch die radial gegenüberliegend angeordneten Messgitter einer gemeinsamen Messrichtung die Messfehler durch geringe Exzentrizitäten weitgehend kompensiert werden können.

Abstand Bohrung (Mittelpunkt) zu Messgittermitte: 2,55mm

Charakteristische Merkmale

- Selbstkompensierend
- Weniger Verschaltungsaufwand

System zur Eigenspannungsermittlung nach dem Bohrlochverfahren

MTS 3000

SINT Technology, Partner von HBM, bietet die Messkette MTS 3000 an, mit deren Hilfe das Bohrlochverfahren einfach durchzuführen ist.

Zur Erzeugung der Bohrung dient ein mit 400.000 U/min rotierender Fräser, dessen Vorschub durch einen Schrittmotor erfolgt. Die beim schrittweisen Einbringen der Bohrung im Messobjekt entstehenden Dehnungsänderungen werden mit den speziell für dieses Verfahren entwickelten DMS-Rosetten (siehe Seite 75-78) erfasst.

DMS-Befestigungsmittel

BCY 01

Die gebräuchlichste Art, Dehnungsmessstreifen mit dem Messobjekt zu verbinden, ist das Kleben. Hierfür sollten unbedingt Klebstoffe verwendet werden, die speziell für diese Anwendung spezifiziert sind und folgende Anforderung erfüllen:

- möglichst verlustlose Übertragung der Verformungen des Messobjektes auf den DMS
- stabiles Verhalten über einen möglichst großen Temperatur- und Dehnungsbereich
- DMS und Messobjekt dürfen nicht angegriffen werden

Alle HBM-Klebstoffpackungen enthalten neben dem Klebstoff das notwendige Zubehör (wie z.B. Fluorpolymer-Trennfolie), die für die Klebung benötigt werden. Die Kriterien für die Klebstoffauswahl sollten sein:

- Einsatztemperatur
- Werkstoff des Messkörpers und Empfehlungen für den jeweiligen DMS
- Anforderungen an Langzeitstabilität und Reproduzierbarkeit
- Oberflächenrauigkeit

Heiß härtende Klebstoffe

Heiß härtende Klebstoffe sind dort anwendbar, wo das Messobjekt auf die geforderte Aushärtetemperatur gebracht werden kann. Das ist im allgemeinen im Messgrößenaufnehmerbau möglich, aber auch dort, wo z.B. Maschinenteile vor dem Einbau appliziert bzw. zur DMS-Installation ausgebaut werden können. Heiß härtende Klebstoffe erfüllen höhere Qualitätsansprüche und sind in einem größeren Temperaturbereich anwendbar als kalt härtende Klebstoffe.

Klebstoff	Beschreibung	geeignete DMS	Topfzeit bei Raumtemperatur (RT)
kalt härtend Z 70 BestNr.: 1-Z70 für optionaler 1-BCY01	Cyanacrylatkleber, dünnflüssig, n Gebrauch mit Z 70 Beschleuniger für Z 70	optimal: Y, C, M, LD, LE Eigenspannungs-DMS gut: G	-
X 60 BestNr.: 1-X60	Methylmetacrylat Zweikomponentenkleber pastös, auch für saugende oder unebene Flächen	optimal: Y, C, M, LD Eigenspannungs-DMS gut: G, LS	ca. 5 Minuten
X 280 BestNr.: 1-X280	Zweikomponenten- Epoxy-Klebstoff für glatte und saugende Flächen	optimal: Y, C, M, LD, LE gut: G	30 Minuten
heiß härtend EP 150 BestNr.: 1-EP150	Einkomponenten- Epoxy-Klebstoff dünnflüssig	optimal: Y, C, M, G, LD, LE gut: Eigenspannungs-DMS	-
EP 310 N BestNr.: 1-EP310N	Zweikomponenten- Epoxy-Klebstoff dünnflüssig,	optimal: Y, C, M, G, LD, LE gut: Eigenspannungs-DMS	1 Monat (bei RT) 6 Monate (bei +2°C)
P250 BestNr.: 1-P250	Einkomponenten Klebstoff dünnflüssig	Optimal: Y, C, M, G, LD, LE, A, U	
P250-R BestNr.: 1-P250-R	Einkomponenten Klebstoff dünnflüssig	Optimal: Y, C, M, G, LD, LE, A, U	

Kalt härtende Klebstoffe

Kalt härtende Klebstoffe lassen sich leicht und mit geringem Aufwand verarbeiten, da sie bei normalen Umgebungstemperaturen aushärten. Bei kurzen Reaktionszeiten spricht man auch von "Schnellklebstoffen". Bevorzugtes Anwendungsgebiet ist die experimentelle Spannungsanalyse. Liegt allerdings die Temperatur an der Messstelle höher als ca. 80°C, so empfiehlt sich die Anwendung eines heiß härtenden Klebstoffes oder eines hitzbeständigen, kalt härtenden Epoxidharz-Klebers (X280).

P250

Punktschweißverbindungen

Punktschweißverbindungen sind nur mit dem Spezial-DMS LS31 möglich, wobei auch das Messobjekt aus schweißbarem Werkstoff bestehen muss. Dieses Verfahren eignet sich besonders für Anwendungsfälle, bei denen die erforderliche Sauberkeit für eine Klebung nicht herzustellen ist. Es sind kaum Vorbereitungen und wenig Übung notwendig. Wichtig ist jedoch, sich genau an die Verfahrensanweisung zu halten, die den Dehnungsmessstreifen beiliegt.

Lagerzeit trocken	Aushärte- temperatur	Aushärte- zeit ⁽³⁾	Anpressdruck (N/mm²)	untere	Temperaturgrenzen obere statisch ⁽¹⁾	obere dynamisch ⁽²⁾	Liefermenge
6 Monate (Kühlschrank)	5°C (3) 20°C 30°C	10 Minuten 1 Minute 0,5 Minuten	Daumendruck	-55°C (kurzzeitig -70°C)	+100°C	+120°C	10 ml ≈ 150 – 200 DMS
12 Monate (Raumtemperatur)	0°C 20°C 35°C	60 Minuten 10 Minuten 2 Minuten	Daumendruck	-200°C	+60°C	+60°C	Komponente A=0,1 kg B=80 ml weitere Gebinde- größen siehe Preisliste
6 Monate (Kühlschrank)	RT95°C	8 h1 h	0,05 0,5	-200°C	+200°C	+280°C	6 Doppel- beutel à 10 g = 60 g
12 Monate (Kühlschrank)	160190°C	6 h 1 h	0,3 0,5	-70°C	+150°C	+150°C	2 Flaschen á 20 ml
6 Monate (Raumtemperatur)	120 200°C	6 h 0,5 h	0,1 0,5	-270°C	+260°C	+310°C	Komponente A = 50 g B = 22 g
12 Monate (Raumtemperatur)	160°C (Nachhärtung bei 180°C empfohlen)	4,5 Stunden 1 Stunde (Nachhärtung)	10-50 N/cm ²	-196°C	+250°C		2 Flaschen á 15g fertig gemischten Klebstoff
12 Monate (Raumtemperatur)	160°C (Nachhärtung bei 180°C empfohlen)	4,5 Stunden 1 Stunde (Nachhärtung)	10-50 N/cm ²	-196°C	+250°C		2 Flaschen á 6g Phenolharz zum Anmischen mit Ethanol
	(1) NI. II I + I			M	(2) A - "		-h 20 00 %

⁽²⁾ nicht Nullpunkt bezogene Messung

⁽³⁾ Aushärtebedingung: realative Luftfeuchte von 30 – 80 %

DMS-Abdeckmittel

Die Qualität einer Messstelle mit Dehnungsmessstreifen hängt nicht nur vom DMS selbst, sondern im wesentlichen auch von der Art der Installation und deren Ausführung ab. Eine einwandfrei funktionierende Messstelle erfordert gründliche Vorbereitung der Installationsfläche, sorgfältiges Kleben, korrektes Verschalten und eine schützende Abdeckung. Es ist deshalb wichtig, dem Anwender die dazu erforderlichen Hilfsmittel bereitzustellen. Das HBM-Programm bietet mit dem DMS-Zubehör alles, was für eine gute DMS-Installation notwendig ist.

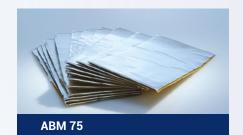
DMS-Abdeckmittel

Im allgemeinen empfiehlt es sich, Dehnungsmessstreifen gegen äußere Einwirkungen wie z.B. Feuchtigkeit oder mechanische Beschädigung zu schützen, da schon geringe Schwankungen der Luftfeuchte die Messsignale eines DMS beeinflussen. Geeignete Abdeckmaterialien haben möglichst geringe Rückwirkung auf die Messstelle. DMS und Messobjekt dürfen nicht angegriffen werden. Kriterien für die Auswahl geeigneter Abdeckmittel sollten sein:

- Einsatztemperatur
- Umgebende Medien an der Messstelle

Die nachfolgende Tabelle hilft bei der Auswahl eines geeigneten Messstellenschutzes, der bei besonderen Anforderungen auch mehrstufig ausgeführt werden kann. Sinnvoll ist zum Beispiel, AK 22 für extrem feuchte Umgebung mit ABM 75 zusätzlich zu versiegeln. Achtung: NG 150 ist nicht mit PU 140 kombinierbar.

Bei mehrstufigen Abdeckungen ist zu beachten, dass die zweite Schicht erst nach vollständiger Aushärtung der unteren Schicht aufgebracht werden darf und diese auf allen Seiten überlappen sollte. Allen HBM-Abdeckmitteln liegt ein Sicherheitsdatenblatt bei.



DMS-Abdeckmittel	Temperaturbereich der Beständigkeit in Luft in °C	Packungs- inhalt	Eine Packung reicht für ca.	Anwendungs- methode	Aushärte- bedingungen	Lagerfähigkeit bei Raum- temperatur	Bestandteile
AK 22 Zäher Kitt BestNr.: 1-AK22	-30+120	1 kg	30 DMS	Aufkneten von Hand	-	2 Jahre	zäher, knetbarer, klebriger Kitt
ABM 75 Aluminiumfolie mit Knetmasse BestNr.: 1-ABM75	-196+75	11 Stück 205 mm x 100 mm	200 DMS	Aufdrücken von Hand	-	2 Jahre	0,05 mm dicke Aluminiumfolie be- schichtet mit 3 mm dicker Knetmasse
NG 150(1) Nitrilgummi BestNr.: 1-NG150	-269+150	3 Flaschen mit je 25 cm ³	35 DMS	Aufstreichen mit Pinsel	lufttrocknend bei Raumtemperatur	1 Jahr	lösungsmittelhaltiger Einkomponenten- Nitrilgummi
SG 250 Transparenter Silikongummi BestNr.: 1-SG250	-70+200 (kurzzeitig+250)*	Tube mit 85 g	20 DMS	Auftragen aus Tube	Raumtemperatur	6 Monate	transparenter, lösungsmittelfreier Einkomponenten- Silikongummi
PU 140(1) Polyurethanlack BestNr.: 1-PU140	-40+140	3 Flaschen mit je 30 ml	250 DMS	Aufstreichen mit Pinsel	Raumtemperatur +80°C	9 Monate	lösungsmittelhaltiger Einkomponenten- Polyurethanlack
SL 450 Transparentes Silikonharz BestNr.: 1-SL450	-50+450	3 Flaschen mit je 25 g	90 DMS	Aufstreichen mit Pinsel	in Temperatur- stufen von 95°C bis 315°C	6 Monate	transparentes, lösungsmittelhaltiges Silikonharz

 $^{^{(1)}}$ Achtung: PU 140 und NG 150 sind nicht kombinierbar * kurzzeitig, < 24 h

Chemische Beständigkeit der HBM-Abdeckmittel

Chemikalie	AK 22	ABM 75	NG 150	SG 250	PU 140	SL 450
Witterung	ja	ja	ja	ja	ja	ja
Wasser: Druckwasser (400 bar) Schwitzwasser Tropenklimate Wasserdampf	ja	ja	ja	ja	ja	ja
	ja	-	-	-	–	-
	-	-	-	-	ja	-
	-	-	-	-	ja	-
	nein	bedingt	nein	nein	nein	nein
Öle:	nein	nein	ja	ja	ja	-
Motoröl (RT/70°C)	-	-	ja	-	-	-
Mineralöl (RT/70°C)	-	-	ja	-	-	-
Hydrauliköl (RT/70°C)	-	-	ja	-	-	-
Fette	-	-	-	-	ja	-
Lösungsmittel allgemein	nein	bedingt	bedingt	nein	-	bedingt
Treibstoffe:	nein	nein	ja	nein	-	-
Benzin	nein	nein	ja	nein	-	-
Kerosin	–	–	ja	–	-	-
Aromate/Aliphate-Gemische	-	-	bedingt	-	-	-
Aromate:	nein	nein	bedingt	nein	nein	nein
Benzol	–	–	nein	–	-	–
Toluol	nein	nein	bedingt	nein	-	nein
Xylol	nein	nein	bedingt	nein	nein	nein
Chlorierte Lösungsmittel: Dichlormethan Tetrachlorkohlenstoff Perchlorethylen 1.2-Dichlorethan o-Dichlorbenzol	nein	nein	nein	nein	nein	nein
	nein	nein	nein	nein	nein	nein
	–	–	nein	–	-	–
	–	–	nein	–	-	–
	–	–	nein	–	-	–
	–	–	nein	–	-	–
Alkohole: Ethylalkohol Methylglykol Butylalkohol iso-Propylalkohol Ethylenglykol	bedingt	ja	bedingt	bedingt	nein	ja
	bedingt	ja	bedingt	bedingt	nein	ja
	-	-	nein	-	-	-
	-	-	bedingt	-	-	-
	-	-	bedingt	-	-	-
	-	-	ja	-	-	-
Ketone:	bedingt	bedingt	nein	nein	nein	bedingt
Aceton	bedingt	bedingt	nein	nein	nein	ja
Methylethylketon (MEK)	nein	nein	nein	nein	nein	bedingt
Terpene: Dipenten Terpentin	-	-	bedingt	-	-	-
	-	-	bedingt	-	-	-
	-	-	ja	-	-	-
Säuren: Salzsäure conc. Schwefelsäure 50 % Essigsäure 50 % Salpetersäure 50 % Ölsäure conc. Milchsäure conc. Säurehaltige Luft	nein nein nein nein nein – –	bedingt ⁽¹⁾	bedingt bedingt ja nein nein ja bedingt	ja ja ja ja – –	nein nein nein nein nein – – ja	ja ja ja bedingt ja – –
Laugen:	bedingt	bedingt ⁽¹⁾	bedingt	nein	bedingt	ja
Natriumhydroxid 10 %	bedingt		nein	nein	nein	ja
Kaliumhydroxid 10 %	–		nein	–	–	-
Ammoniak 28 %	–		bedingt	–	–	-
Alkalienhaltige Luft	–		–	–	ja	-
Verflüssigte Gase (außer Sauerstoff)	-	-	ja	-	-	-
UV-Beständigkeit	ja	ja	ja	ja	ja	-

 $^{^{(1)}}$ bis 5 % (Zerstörung der Aluminiumfolie!)

bedingt = bedingt beständig (mind. 10 Tage bei RT)

Chemische Beständigkeit

Wenn nicht besonders gekennzeichnet, bezieht sich die Beständigkeit immer auf Raumtemperatur. Über Langzeitwirkungen können keine Angaben gemacht werden. Die Angaben basieren auf eigenen Erfahrungen bzw. wurden der Literatur entnommen. Da die Randbedingungen beim Anwender individuell verschieden sind, wird im Zweifelsfall ein Versuch zur Beständigkeit empfohlen. Einige Abdeckmittel werden im Kontakt mit diversen Chemikalien milchig.

Reinigungsmittel, Hilfsmittel zum Kleben und Löten

Reinigungsmittel RMS1

Umweltverträgliche Lösungsmittelkombination, die alle üblichen Verschmutzungen löst. Eine Verpackungseinheit enthält 1l Reinigungsmittel und 450 Stück Vliesstoffpads. Bestell-Nr.: 1-RMS1

Reinigungsmittel RMS1 SPRAY

Umweltverträgliche Lösungsmittelkombination. Enthält 5 Spraydosen mit je 200 ml Reinigungsmittel und 450 Stück Vliesstoffpads.

Bestell-Nr.: 1-RMS1-SPRAY

Fluorpolymer-Trennfolie

33 m Fluorpolymer-Trennfolie auf Rolle, geeignet für kalt- und heißhärtende DMS-Klebungen. Die Fluorpolymer-Trennfolie verhindert, dass außer den DMS weiteres Material auf dem Bauteil verklebt wird. Dicke: 0,05 mm, Breite: 60 mm.

Temperatureinsatzbereich: -200°C bis +260°C.

Bestell-Nr.: 1-RELEASEFILM

Flussmittelstift

Löthilfe in Filzschreiberform zur Herstellung kleiner Lötverbindungen. Geeignet für Lote mit Schmelzpunkten bis 350°C. Der Flussmittelstift enthält nicht korrosiv wirkendes Flussmittel ohne Chlorid. Packungsinhalt 5 Stück.

Bestell-Nr.: 1-FS01

Polyimid-Klebeband

33 m hitzebeständiges Klebeband, 19 mm breit, ca. 70 μ m Gesamtdicke. Temperatureinsatzbereich: -70°C bis +260 °C.

Bestell-Nr.: 1-KLEBEBAND

Vliesstoffpads

Zellstoff zum Reinigen von Messobjekten vor der DMS-Installation. Format 5 cm x 5 cm. Packungsinhalt 450 Stück

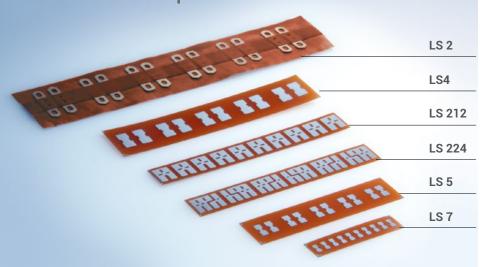
Bestell-Nr.: 1-8402.0026

Reinigungsmittelspender

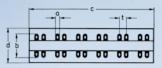
Um eine Verschmutzung des Lösungsmittels im Laufe der Zeit zu vermeiden empfehlen wir den Reinigungsmittelspender "RSP 120" zu verwenden.

Bestell-Nr.: 1-RSP120

Reinigungsmittel RMS1 SPRAY

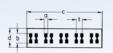

Flussmittelstift

Reinigungsmittelspender


Lötstützpunkte

Bei Dehnungsmessstreifen, die mit Anschlussbändern oder -drähten versehen sind, sollten zwischen Anschlusskabel und DMS Lötstützpunkte installiert werden. Dadurch wird die Ausführung einer einwandfreien Lötstelle erleichtert und eine Zugentlastung der DMS-Anschlüsse erreicht. Die Lötstützpunkte werden in gleicher Weise wie die DMS auf dem Messobjekt installiert und es können alle Klebstoffe von HBM verwendet werden. HBM bietet Lötstützpunkte in verschiedenen Ausführungen und Abmessungen an.

LS₂


Bronzelötösen vernickelt auf Polyimidträger geeignet für dynamische Beanspruchung Befestigung auf Messobjekt: Kleben Anwendbar von -200°C bis 180°C, kurzzeitig bis 260°C

Bestellbezeichnung	Abmessungen (mm)				Abstand	Inhalt je Packung
	Lötfahne		Träger			
Stahl	а	b	С	d	t	
1-LS 2	2,6	13,5	72	20	4	36 Paar
						(6 Streifen)

LS7/5/4

Kupfer vernickelt auf Polyimid Befestigung auf Messobjekt: Kleben Anwendbar von -200°C bis 180°C, kurzzeitig bis 260°C

Bestellbezeichnung	Abmessungen (mm)				Abstand	Inhalt je Packung
	Lötfahne Träger		ger			
Stahl	а	a b c d		t		
1-LS 7	1	3	21	6	2	125 Paar
1-LS 5	1,5	4,5	35	10	2,5	125 Paar
1-LS 4	2,5	6,5	50,1	13	4	125 Paar
						(je 25 Streifen)

LS212

Kupfer, vernickelt auf Polyimid Befestigung auf Messobjekt: Kleben Anwendbar von -200°C bis 180°C, kurzzeitig bis 260°C

Bestellbezeichnung	Abmessungen (mm)				Abstand	Inhalt je Packung
	Lötfahne Träger					
Stahl	а	b	С	d	t	
1-LS 212	3,7	6	47,5	8	1	125 Paar
						(25 Streifen)

LS224

Kupfer, vernickelt auf Polyimid Befestigung auf Messobjekt: Kleben Anwendbar von -200°C bis 180°C, kurzzeitig bis 260°C

Bestellbezeichnung	Abmessungen (mm)				Abstand	Inhalt je Packung
	Lötfahne Träger					
Stahl	а	b	С	d	t	
1-LS 224	6,5	6	45	8	1	150 Paar
						(25 Streifen)

Kabel und Litze

PVC-Flachbandleitung

PVC-isolierte Flachbandleitung, bestehend aus sechs Leitungen mit einem Querschnitt von je $0,14\,\text{mm}^2$, $50\,\text{m}$ pro Rolle, Widerstand $0,131\,\Omega/\text{m}$.

Bestell-Nr.: 1-3133.0034

Kupferlackdraht

Polyurethanisolierter Kupferdraht mit einem Querschnitt von 0,04 mm², 25 m lang. Bestell-Nr: 1-CULD01

Fluorpolymerisolierter Schaltdraht mit einem Querschnitt von $0.05\,\text{mm}^2$, gelb, $100\,\text{m}$ pro Rolle, Widerstand $0.34\,\Omega/\text{m}$.

Bestell-Nr.: 1-3130.0239-G

Schwinglitze

für interne, freiliegende Verdrahtung von Messgrößenaufnehmern; Querschnitt 0,04 mm² (mehrdrahtig), 0,6 mm Außendurchmesser, Widerstand 0,417 Ω /m, zulässige Temperatur +70°C, 25 m pro Rolle, PVC-Isolierung. Bestell-Nr.: 1-SLI 01

Schaltlitze

Fluorpolymerisolierte Schaltlitze mit einem Querschnitt von 0,24 mm 2 (mehrdrahtig), Außendurchmesser von 0,9 mm, 100 m pro Rolle, Widerstand 0,0741 Ω /m.

blau Bestell-Nr.: 1-3301.0092-B grün Bestell-Nr.: 1-3301.0091-GR weiß Bestell-Nr.: 1-3301.0094-W schwarz Bestell-Nr.: 1-3301.0088-S rot Bestell-Nr.: 1-3301.0089-R

PVC-Flachbandleitung und Kupferlackdraht

Schaltdraht und Schwinglitze

Schaltlitze, erhältlich in den Farben Blau, Grün, Weiß. Schwarz und Rot

Benennung	Isolation	thermische Beständigkeit	chemische Beständigkeit	typ. Anwendung
Schaltlitze 1-3301.0088-S 1-3301.0089-R 1-3301.0091-GR 1-3301.0092-B 1-3301.0094-W	Fluorpolymer	-200+260°C	unbeständig gegen: elementares Fluor, Chlortrifluorid, geschmolzene Alkalimetalle. Ansonsten beständig gegen alle Chemikalien	zur internen Verschaltung von DMS-Brücken bzw. zum kontaktieren von DMS bis zum Lötstützpunkt
Schaltdraht 1-3130.0239-G	Fluorpolymer	-200+260 °C	siehe Schaltlitze	siehe Schaltlitze
Schwinglitze 1-SLI 01	PVC	kurzzeitig 105°C dauernd 70°C	unbeständig gegen: Ester, chlorierte Kohlenwasserstoffe, Ketone, Aromate, Benzol, flüssige Halogene, konz. Salpetersäure, je nach Weichmacher auch wässrige Lösungen	zur internen Verschaltung der DMS in Messgrößenaufnehmer
PVC-Flachbandleitung 1-3133.0034	PVC	kurzzeitig 105 °C dauernd 90 °C	siehe Schwinglitze	siehe Schaltlitze
Kupferlackdraht 1-CULD 01	Polyurethan	kurzzeitig 175°C dauernd -40155°C	unbeständig gegen: starke Säuren, starke Laugen, Alkohole, Aromate, Sattdampf, heißes Wasser	zur internen Verschaltung der DMS in Messgrößenaufnehmer

Geschirmte Messkabel

Тур	CABP4/20	CABP1/20	
Bemerkungen	Sehr dünnes, geschirmtes Messkabel (AWG 32) für kürzere Distanzen. Sehr weiter Temperatureinsatzbereich. Als Rolle zu 20 m.	Sehr dünnes, geschirmtes Messkabel (AWG 32) für kürzere Distanzen. Sehr weiter Temperatureinsatzbereich. Als Rolle zu 20 m.	
Mantelfarbe	weiß	weiß	
Adernzahl	4	6	
Außendurchmesser [mm]	1,6	1,6	
Adernquerschnit [mm²]	0,16	0,16	
Isolationsmaterial (Ader)	PFA	PFA	
Material des Kabelmantels	PFA	PFA	
Widerstand [Ω/m]	0,492	0,492	
Isolationswiderstand (Ader-Ader) [Ω /m]	k.A.	k.A.	
Kapazität (Ader-Ader) [pF/m]	43	43	
Kapazität (Ader-Schirm) [pF/m]	k.A.	k.A.	
Temperaturbereich [°C]	-200 +200	-200 +200	
Viertelbrücken in Dreileiterschaltung; Halbbrücken ohne Anschluss der Fühlerleitung	х		
Viertelbrücken in Vierleiterschaltung; Vollbrücken ohne Anschluss der Fühlerleitung	х		
Halbbrücken; Vollbrücken mit Anschluss der Fühlerleitung		х	
Bestellnummer	1-CABP4/20	1-CABP1/20	

Mindestbestellmenge: 10 m; CABP4/20 und CABP1/20 Rolle zu 20 m Weitere Informationen finden Sie in der Preisliste (Wägezellen, Aufnehmer, Messverstärker, Datenerfassung und Software)

KAB5/00-4	KAB5.4/00-6	KAB5.4/00-6-TPE	KAB7.5/00-2/2/2
Kapazitätsarm, deshalb auch für TF-Messverstärker und größere Entfernungen geeignet. Sehr dünn, daher prädestiniert für geometrische kritische Verhältnisse	Preiswertes Sechsleiterkabel für unkritische Anwendungen (TF 600 Hz < 50 m TF 4,8 kHz < 20 m)	Sechsleiterkabel TPE für unkritische Anwendungen (TF 600 Hz < 50 m TF 4,8 kHz < 20 m)	Paarweise verdrilltest und vierfach geschirmtes Kabel, auch für größere Entfernungen und höher frequente TF-Verstärker geeignet
grau	grau	blutorange	grau
4	6	6	6
5	5,4	5,4	7,5
0,17	0,14	0,14	0,14
PE	PE	TPE	PE-A
PVC	PVC	TPE	PVC
0,106	0,13	0,13	0,138
1012	10 ¹²	1012	1012
80	82	78	80
80	82	78	130
-35 +80	-30 +85	-50 + 120	-30 +70
х			
х			
	х	х	х
4-3133.0002	4-3131.0071	4-3301.0152	4-3301.0071

DMS-Installationskoffer

DMS-Starter Kit DAK 1

Dieser handliche Kunststoffkoffer beinhaltet alle notwendigen Materialien für erste DMS-Installationen. Er verhilft zu einem einfachen Einstieg in die DMS-Technik.

Eine Menge Know-how rund um die Installation und Verschaltung von Dehnungsmessstreifen sowie die Interpretation der Messwerte liefert das Fachbuch von Karl Hoffmann, einem erfahrenen Praktiker der DMS-Technik.

Für den Einstieg in der Praxis finden Sie:

- Dehnungsmessstreifen
- Lötstützpunkte
- Reinigungsmittel und Vliesstoffpads
- Schmirgelleinen
- Die kalthärtenden Klebstoffe X60 und Z70
- Anschlusslitzen
- 2 Mittel zum Messstellenschutz: AK22 und ABM75

Durch den jahrelangen Einsatz des DAK1 in hauseigenen DMSund Geräteseminaren wurde der Inhalt stetig optimiert.

Bestell-Nr.: 1-DAK1

Inhalt DAK	1
10 Stück	DMS 1-LY11-6/120A
10 Stück	DMS 1-LY61-6/350A
5 Stück	DMS K-CLY41-6/120 mit 1 m TPE-Anschlusskabel
je 1 Packung	Lötstützpunkte LS5, LS212, LS224
1 Packung	Klebstoff Z70
1 Packung	Klebstoff X60
1 Stück	Abdeckmittel AK 22
1 Stück	Abdeckmittel ABM 75
6 Stück	Anschlusslitze, 30 cm
1 Bogen	Schmiergelleinen K180
200 ml	Reinigungsmittel RMS1
1 Satz	Vliesstoffpads
1 Rolle	Lot, bleifrei
1 Stück	Petrischale
1 Stück	Fachbuch "Eine Einführung in die Technik des Messens mit Dehnungsmessstreifen"

DMS-Installationskoffer DAK 2

Der DAK 2 enthält alle für den Aufbau von Dehnungsmessstreifen-Installationen erforderlichen Werkzeuge und Hilfsmittel. Er ist transportstabil und abschließbar. Im unteren Teil des DAK 2 sind unter dem herausnehmbaren Einsatz Leerräume für diverse Klebstoffe und zur individuellen Nutzung vorhanden.

Abmessungen: 470 x 170 x 360 mm

Gewicht: ca. 6 kg

(inkl. Standard-Lieferumfang)

Bestell-Nr.: 1-DAK2

Inhalt DA	C 2
1 Stück	Flachpinsel
1 Stück	Einschlaglupe (6-fach)
1 Stück	Nutenlineal, 150 mm
1 Stück	Radierstift
1 Stück	Schere, gezahnt
1 Stück	Spitzschere
1 Stück	Pinzette, breit
1 Stück	Pinzette, spitz
1 Stück	Maßstab, biegsam, 300 mm
1 Stück	Dentalsonde mit abgebogener Spitze
1 Stück	Zementspatel
1 Stück	Schneid- und Abisolierzange
1 Stück	Petrischale 60/15
10 m	Flachbandkabel 6 x 0,14 mm², verschiedenfarbig
25g	Lötdraht Ø 1 mm, bleifrei
1 Stück	Flussmittelstift
1 Stück	Rolle Tesafilm
1 Stück	Radiergummi
1 Stück	Kugelschreiber HBM
je 1	Bogen Korundleinen, Körnung 180/220/360
100 cm ³	Lösungsmittel RMS 1
200 Stück	Vliesstoffpads, 50 x 50 mm

Brückenergänzung, Röhrenlötzinn, bleifreies Lot

Brückenergänzungen

Widerstandshalbbrücken werden zum Aufbau der Wheatstoneschen Brückenschaltung mit den Dehnungsmessstreifen einer Messstelle zusammen verschaltet. Entsprechend der DMS-Nennwiderstände bietet HBM verschiedene Widerstandswerte an.

2 x 120 Ω Bestell-Nr.: 3-3054.0334 2 x 350 Ω Bestell-Nr.: 3-3054.0282

Bleifreies Lot

Bleifreies Röhrenlötzinn für DMS-Anwendungen. Durchmesser: 0,5 mm; Sn95,5Ag3,8Cu0,7 ("no clean"). Schmelzbereich: 217 °C bis 219 °C. Lieferform: 500 g auf Rolle Bestell-Nr.: 1-LOT-LF

Literatur

DMS-Fachbuch:

"Eine Einführung in die Technik des Messens mit Dehnungsmessstreifen"

Eine praxisnahe Einführung in dieses Spezialgebiet der Messtechnik unter besonderer Berücksichtigung von Maßnahmen zur Vermeidung bzw. zur Korrektur von Messfehlern.

Bestell-Nr.: 1-Hoffm. Buch-D (deutsch)

1-Hoffm. Buch-E (englisch)

Optische Dehnungsmessstreifen

Fiber**Sensing**

Dehnungs-Messfaser

Dehnungsmessstreifen

Dehnungsrosette

Anschweißbarer Dehnungssensor

Composite Dehnungssensor

Einbettbarer Dehnungssensor

Bringing light to measurement

Finden Sie hier auch auf Faser-Bragg-Gittern basierende Sensoren für die Dehnungsmessung. Diese optischen Dehnungsmessstreifen sind für den Einsatz in vielen verschiedenen Anwendungen konzipiert.

Besondere Merkmale

- Messungen ohne Drift mit garantierter absoluter Referenz
- Unempfindlich gegenüber elektromagnetischen Feldern und passiv für den Einsatz in explosionsgefährdeten Bereichen
- Außerst widerstandsfähig gegenüber hohen Dehnungsniveaus und Materialermüdung
- Robuste, optimierte Konstruktion f
 ür einfache Installation selbst in anspruchsvollen Umgebungen

Beispielanwendungen

- Dehnungssensoren von HBM FiberSensing für unterschiedliche Werkstoffe und Befestigungsverfahren (Kleben, Schweißen, Einbetten oder Anschrauben)
- Sensoranordnungen mit definierbaren Entfernungen und Wellenlängen, verbunden über Fusionsspleiße und installationsbereit
- Einsatz vorhandener Temperatursensoren für die Temperaturkompensation und/ oder für ergänzende Messungen
- Nackte Faser mit mehreren FBG-Sensoren mit konfigurierbaren Wellenlängen und Entfernungen für schwer zugängliche Messstellen, Installation in kleinen Bauteilen oder Einbetten in Verbundwerkstoffe

Komplettlösungen

Kombinieren Sie die optischen Dehnungsmessstreifen mit anderen Arten von optischen Sensoren für unterschiedliche Messgrößen und erfassen Sie Daten mit den zuverlässigen optischen Interrogatoren von HBM FiberSensing.

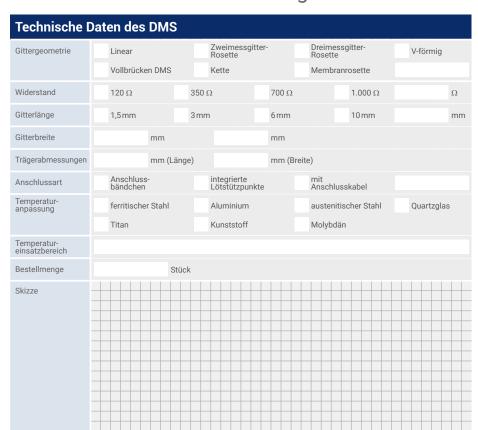
Schaffen Sie echte Hybridsysteme durch die Kombination von Faser-Bragg-Gitter-Messungen mit den verschiedenen Datenerfassungs- und Softwarelösungen von HBM.

Weitere Infos unter: www.hbm.com/fibersensing

Kundenspezifische Dehnungsmessstreifen

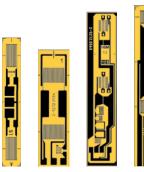
- Sie haben spezielle Anforderungen, denen kein DMS aus unserem Standardprogramm genügt?
- Sie suchen einen äguivalenten DMS zu Ihrem momentan verwendeten?
- Sie haben selbst einen DMS konstruiert?

Sprechen Sie uns an, wir fertigen Ihren speziellen Wunsch-DMS!


Schicken Sie uns Ihre Anfrage oder Ihr Layout direkt via e-Mail an: info@hbm.com

Membramrosetten-DMS

Checkliste für Ihre DMS-Anfrage


T-DMS

Vollbrücken-DMS

Halbbrücken-DMS

Seminare

Messdaten sind der Schlüssel, um Ihre Produkte weiterzuentwickeln. In den Seminaren der HBM Academy begleiten Sie unsere Trainer und Messtechnik-Experten auf dem Weg zum "richtigen" Ergebnis: Von der Auswahl und Installation der Sensorik über die sichere Messdatenerfassung bis hin zur Auswertung und Bewertung Ihrer Ergebnisse.

Von Grundlagen- bis Profiseminare

Grundlagen-Veranstaltungen, in denen wir noch einmal die wichtigsten "Basics" beleuchten. Grundlegend, aber wichtig!

Aufbauseminare zu einzelnen Messgrößen und Sensortechnologien. Jetzt geht's ins Detail.

Profiseminare zum Einsatz der kompletten Messkette von Sensor bis Software und zu komplexen Spezial-Anwendungen. Für Experten!

Seminare zu Dehnungsmessstreifen

- Grundlagen der DMS-Installation und DMS-Messtechnik (DK)
- Messen mit Dehnungsmessstreifen planen, verschalten und auswerten (DM)
- DMS-Installation auf Kunststoffen und Faserverbundstoffen und Leiterplatten (DK-F)/Aufbauseminar
- Experimentelle Spannungsanalyse zur Bauteilbeurteilung
- Individuelle Seminare nach Kundenwunsch bei Ihnen oder bei uns

Unser vollständiges Seminarprogramm sowie detaillierte Info zu Inhalten und Terminen finden Sie unter: www.hbm.com/seminare

ww.hbm.com

© Hottinger Baldwin Messtechnik GmbH. Änderung vorbehalten. Alle Angaben beschreiben unsere Produkte in allgemeiner Form. Sie stellen keine Beschaffenheitsoder Haltbarkeitsgarantie im Sinne des § 443 BGB dar und begründen keine Haftung.

HBM Test and Measurement

Tel. +49 6151 803-0 Fax +49 6151 803-9100 info@hbm.com

